Mathematical

Structures and Modeling
2025. N. 2 (74). PP. 38—44

UDC 517.545,517.962.2,519.173
DOI 10.24147/2222-8772.2025.2.38-44

ON THE KIRCHHOFF INDEX FOR CIRCULANT GRAPH
WITH NON-FIXED JUMPS

G.K. Sokolova'?
Ph.D. student, Assistant, e-mail: g.sokolova@g.nsu.ru

'Novosibirsk State University, Novosibirsk, Russia

ZNovosibirsk State Technical University, Novosibirsk, Russia

Abstract. This article deals with a graph invariant called the Kirchhoff index. An
explicit analytical formula for the Kirchhoff index of circulant graphs with non-fixed
jumps is defined.

Keywords: circulant graph with non-fixed jumps, Laplacian eigenvalues, Kirchhoff
index of a graph.

Introduction

The Kirchhoff index K f(G) of a finite connected graph G was originally defined by
D.J. Klein and M. Randi¢ [1] as the mean resistance distance between its vertices, in other
words,

Kf(G) = %ZZ%

i=1 j=1

where r;; is the resistance distance between the vertices v; and vj, i.e. 745 is equal to
the resistance between equivalent points on an associated electrical network obtained by
replacing each edge of GG by a unit resistor. Later the simple formula

KF(G)=nd+
=2 "

relating the Kirchhoff index to the spectrum of the Laplace matrix was independently
found in [2] by I. Gutman, B. Mohar and [3] by H.Y. Zhu, D.J. Klein and 1. Lukovits.
Kirchhoft indices for various graph families have been studied, for example, in [4-8]. In
particular, the analytical formula for the Kirchhoff index for a circulant graph with fixed
jumps was found in paper [8], where the asymptotics of this formula was also investigated.

The main goal of this paper is to find explicit analytical formulas for the Kirchhoft
indices of circulant graphs with non-fixed jumps. We will present these formulas as sums
of finitely many terms whose number is independent of n, and each of these terms amounts
to a rational function evaluated at the roots of some fixed polynomial.
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1. Preliminaries and preliminary results

Consider the finite connected graph G,,, that is, a graph containing one component
of connectivity with finite sets of vertices V' (G) and edges E(G). Suppose a graph G,
allows multiple edges, but not loops. The following class of circulant graphs is considered
throughout this paper.

Definition 1. A graph G,, = Cj,,(s1,. .., Sk, cun, ..., aun) is called a circulant graph
with non-fixed jumps 1 < s1 < ... < s < [%"} andl < o1 < ... <ap < [g} on n
vertices if any ¢-th vertex is adjacent to vertices ¢ &= s1, @ £ So,...,% £ S, and © £ aqn,
1+ aon, ..., i+ ayn modulo Sn. Here [ and /¢ are positive integers and n is assumed to

be sufficiently large.

Note that if i < [£], then the graph G,, does not contain multiple edges. If o, = [£],
then any i-th vertex is connected to the vertex ¢ + '%” modulo Sn by two parallel edges.

Let A = {auo fuvev(q) be the adjacency matrix of G, where a,,,, is the number of edges
between vertices v and v of Gi. Let us introduce a valency matrix D = {dy, } vev (c), Where

dy, is a degree of the vertex v € V(G) which may be determined by d,, = >  ayy-
ueV(G)
Then the matrix £ = D — A is called the Laplace matrix or Laplacian of the graph G.
Associate with each graph G,, = Cg,,(s1, . . ., Sk, aun, . . ., oyn) the associated Laurent

polynomial

k ¢
L(z)=2(k+1¢) — Z(zsl + 27%) — Z(zamn 4z,

=1 m=1

describing the structure of the Laplace matrix £ of a given graph. Note that the numbering
of the vertices of a circulant graph (,, may be chosen in such a way that the adjacency
matrix A and the Laplace matrix £ of G,, are circulant. Recall that a matrix of order n is
called circulant if it has the form

r1T o T3 ... Tn
. Ty 1 T2 ... Tp-1
circ(zy, e, ..., Ty) =
Ty T3 Tyg4 ... o

This means the Laplacian of the graph GG,, may be defined as the matrix

k l
L=LT)=2k+(E — Z(Tsi +T7%) — Z(Tamn Ty,

=1 m=1
where T' = circ(0, 1,0, ..., 0) is circulant matrix of order Sn, which represents the cyclic
shift operator 7" : (21, %2, ..., %801, Tsn) — (T2,T3,...,%an, T1), and E is the identity

matrix of the respective order. Fined the spectrum of the Laplace matrix. Suppose that \ be
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an eigenvalue of £ and v be the respective eigenvector. As is known, then det(L—AE) =0
and the following system of linear equations holds

2k +€) = NE =Y (T +T7%) = Y (T*" +T7*")| v =0, (1)

i=1 m=1

Note that [9] the powers of the primitive root of unity an are the eigenvalues of 7', here

7=0,1,...,6n—1and (;, = ¢! . This means that the matrix T is similar to the diagonal
matrix T = diag(1, (sn, ..., (s, ') and the unit vectors e;4; = (0,...,0, _1_,0,...,0)
j+1—th

of length Sn are Laplacian eigenvectors. The matrix of system (1) is written in diagonal
form

k 14

20k +€) = NE = (T + T~ = > (T*" + T ") | ¢; = 0.

=1

From this relation it follows the eigenvalues \; of the Laplacian £ are given by the formula

=N

14
A =20k 0) = Y (G Gal™) = DG+ Gl ) = L(Gha).
m=1

=1

Recall the considered graph (), is assumed to be connected. This means that Ay = 0 and
Aj>0forj=1,2,...,6n—1

In conclusion of this section, we present Theorem and Lemma from the article [8]
which are necessary to prove the main result of this paper.

Theorem 1. The Kirchhoff index of the circulant graph G = C,,(s1, Sa, ..., Si) can
be calculated as

4
n 2 zzzzl K S n? Up—1 (wy)
Kio=—— " = | T 2 Gy (1 = To(wy))
125 52 52 p=2 P P

where w,, is a root of the polynomial Q)(w) = Z (2—27;, (w)) distinct from 1, where T,,(w)

and U, (w) are the Chebyshev polynomials of the first and the second kind respectively.

Lemma 1. Consider two nonconstant polynomials P(w) and R(w) of degrees n and
m, respectively. Denote the roots of P(w) by aq,aa, ..., a, and the roots of R(w) by
b1, B2, -, Bm- Suppose that R(w) lacks multiple roots and that P(w) and R(w) lack

common roots. Then
Z ) :
R’ ﬁ])

j:l 7=1

n
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2. Kirchhoff index for circulant graph

In this section, an explicit analytical formula for the Kirchhoff index of a circulant
graph with non-fixed jumps is given. The formula contains a sum whose terms amount to
analytical expressions evaluated at the roots of a prescribed polynomial of degree s;.

Consider the Laurent polynomial L(z) for G,, = Cg,(s1,..., Sk, ain,...,on) and
represent it as the sum L(z) = P(z) + p(z2") of polynomials

~

P(z) =2k — Z(z +27%), pla) =20 =) (2% +z70m).

m=1

Introduce the following set of polynomials
P,z)=P(z)+p(¢s), u=0,1,...,8n —1, )

Where it is easy to see that

Let 7, (w) = cos nf be the Chebyshev polynomial of the first kind [10], here § = arccos w.

2421 2"+z~

Since the equality 7, ( ) = ~ satisfies for the Chebyshev polynomial 7, (w),

2 2
the polynomial P(z) may be written as

k

P(z) = Qw) = Y (2 —2T;,(w)),

=1

where w = % Thus, for polynomials (2) the following representation is valid

k ¢ UL, TT
P& = Qulw) = D2 27, (w)) 443w (12,

i=1 m=1
Note that the roots of the polynomials P,(z) and @, (=) are related by the following fact.

Remark 1. If the quantities z, i, for k =1,2,...s, are the roots of the polynomial
2kt

-1
P,(z), then the numbers w;, = 22"k are the roots of the polynomial @, (w).
2

Suppose that the polynomials L(z) and Q)(w) lack multiple zeros. Since eigenvalues
of the Laplacian \; = L(ei%) of the graph G,,, then

. ¢ .
;27 21y . g Ja,T
A = Pi(e"Pn :Q(COS—)+4 sin® ————.
J ]( ) ﬁn ’mzl 5

Let us formulate the main Theorem of this article.
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Theorem 2. The Kirchhoff index of a graph G,, = an(sl, ey Sk, OO, L. ) With
Jjumps 1 < 51 < ... <8 < [%} andl < o3 < ... <ay < [g} can be calculated using
the formula

k
> s
pn = 2n?Us,
KfGn = A Tl2— kl Z Q/ 157’22(3]))7
1225? 2322 w: Q;}l) 0
i=1 i=1 w

where T, (w) and Ug,—1(w) are the Chebyshev polynomials of the first and the second
kind respectively.

Proof. Since Laplacian eigenvalues of the graph GG, are \; = L(ei% ), then the Kirchhoff
index is written as

Bn—1 Bn—1

Kl =35, —ﬁnz —

Let us introduce a substitution in the index of the series j = ft +u,then 0 <t <n —1
and 0 < v < 8 — 1. The Kirchhoff index may be rewritten by formula

n—1 ﬁ 1 n—1 Bn
Kfa, =Y == Q(cos 7y + - ,
t=1 u=1 t=0 Q(COS 27"(22"‘”)) +4 Z sin2 uaénﬂ'
m=1
where the terms of type
n—1
271't - KfG

—1 COS

is Kirchhoff index K f(G) for a circulant graph with fixed jumps G. This means that it is
necessary to calculate only the sum

B—1 n—1

¥y o

u=1 t=0 Q(cos (Bt+u )+ 4 Z sin? uagﬂr

Note that the numbers o = cos 2% are all roots of the polynomial 7,,(w) — 1, where 3 = 1
27 (Bt+u)

andt = 1,2,...,n. Then the numbers oy = cos i

77—[3”"(%):11. Introduce the following notations

are roots for the polynomial

¢
P(w) = Tgn(w) — 1, R(w) =Q(w)+4 Z sin? 24T

m=1
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Denote the roots of P(z) by o, heret = 1,2,...,n,andu = 1,2,...,5 — 1, the roots
of R(w) by 3 where j = 1,2,...,gandu = 1,2,..., 3 — 1. Note that

U, TT
>0,

p

l
R(o}) = Qo) +4)  sin®
m=1

in other words, the polynomial R(w) does not vanish at the roots of polynomial P(w).
It follows from this that the polynomials P(w) and R(w) lack common roots. Observe
P'(w) = BnUg,—1(w) and R'(w) = @' (w). According to Lemma 1, the equality holds

—

—1 n—

»

q

1 = Bnlsn1(BY)
R(ay) 2.2 Q(BY)(1 = Tan(BY))

u=1 j=1

1t

Il
=)

S
Il

Thus, we obtain

B—1 gq 2.2 U
- B°n* Ugn—1(B5)
Kfen = PEfo+ 2D g - Ton( 3]

u=1 j=1

Combining formula (1) for K f; with the obtained formula we get the required result. W
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Ob UHAEKCE KUPXT'O®PA V1A HUPKYJISAHTHOI'O I'PADA
C HE®OUKCUPOBAHHBIMHU CKAYKAMM

I'.K. CokosoBa'-?
aCIUpaHT, aCCUCTEHT, e-mail: g.sokolova@g.nsu.ru

"HoBocu6upckuii rocynapctsennblii yausepcutet, Hobocu6upck, Poccust
2HoBocubupcKuii rocyapcTBeH b TeXxHnueckuil yausepcutet, HoBocubupck, Poccus

AnHoranusi. PaccmarpuBaeTcst mHBapuaHT rpaga, HasblBaeMblil nHAeKcoM Kupxrodda.
Omnpenensercs siBHasl aHaTUTHYeCKasi ¢opMyna nHAekca Kupxrodda mist HupKyIssHTHBIX
rpaoB ¢ HE(PUKCUPOBAHHBIMU CKAYKAMHU.

KnroueBble c10Ba: OUPKYJISIHTHBINA rpad ¢ HeUKCHMPOBAHHBIMU CKaYKaMH, COOCTBEHHbIE
3HaueHnust Jlannacuana rpaga, uagexkc Kupxrogda nis rpaga.
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