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Introduction

The Kirchhoff index 𝐾𝑓(𝐺) of a finite connected graph 𝐺 was originally defined by
D.J. Klein and M. Randić [1] as the mean resistance distance between its vertices, in other
words,

𝐾𝑓(𝐺) =
1

2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑟𝑖𝑗,

where 𝑟𝑖𝑗 is the resistance distance between the vertices 𝑣𝑖 and 𝑣𝑗 , i.e. 𝑟𝑖𝑗 is equal to
the resistance between equivalent points on an associated electrical network obtained by
replacing each edge of 𝐺 by a unit resistor. Later the simple formula

𝐾𝑓(𝐺) = 𝑛
𝑛∑︁

𝑗=2

1

𝜆𝑗
,

relating the Kirchhoff index to the spectrum of the Laplace matrix was independently
found in [2] by I. Gutman, B. Mohar and [3] by H.Y. Zhu, D.J. Klein and I. Lukovits.
Kirchhoff indices for various graph families have been studied, for example, in [4–8]. In
particular, the analytical formula for the Kirchhoff index for a circulant graph with fixed
jumps was found in paper [8], where the asymptotics of this formula was also investigated.

The main goal of this paper is to find explicit analytical formulas for the Kirchhoff
indices of circulant graphs with non-fixed jumps. We will present these formulas as sums
of finitely many terms whose number is independent of n, and each of these terms amounts
to a rational function evaluated at the roots of some fixed polynomial.
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1. Preliminaries and preliminary results
Consider the finite connected graph 𝐺𝑛, that is, a graph containing one component

of connectivity with finite sets of vertices 𝑉 (𝐺) and edges 𝐸(𝐺). Suppose a graph 𝐺𝑛

allows multiple edges, but not loops. The following class of circulant graphs is considered
throughout this paper.

Definition 1. A graph𝐺𝑛 = 𝐶𝛽𝑛(𝑠1, . . . , 𝑠𝑘, 𝛼1𝑛, . . . , 𝛼ℓ𝑛) is called a circulant graph
with non-fixed jumps 1 ⩽ 𝑠1 < . . . < 𝑠𝑘 <

[︀
𝛽𝑛
2

]︀
and 1 ⩽ 𝛼1 < . . . < 𝛼ℓ ⩽

[︀
𝛽
2

]︀
on 𝛽𝑛

vertices if any 𝑖-th vertex is adjacent to vertices 𝑖 ± 𝑠1, 𝑖 ± 𝑠2, . . . , 𝑖 ± 𝑠𝑘 and 𝑖 ± 𝛼1𝑛,
𝑖± 𝛼2𝑛, . . . , 𝑖± 𝛼ℓ𝑛 modulo 𝛽𝑛. Here 𝛽 and ℓ are positive integers and 𝑛 is assumed to
be sufficiently large.

Note that if 𝛼ℓ <
[︀
𝛽
2

]︀
, then the graph𝐺𝑛 does not contain multiple edges. If 𝛼ℓ =

[︀
𝛽
2

]︀
,

then any 𝑖-th vertex is connected to the vertex 𝑖± 𝛽𝑛
2

modulo 𝛽𝑛 by two parallel edges.
Let𝐴 = {𝑎𝑢𝑣}𝑢,𝑣∈𝑉 (𝐺) be the adjacency matrix of𝐺, where 𝑎𝑢𝑣 is the number of edges

between vertices 𝑢 and 𝑣 of𝐺. Let us introduce a valency matrix𝐷 = {𝑑𝑣𝑣}𝑣∈𝑉 (𝐺), where
𝑑𝑣𝑣 is a degree of the vertex 𝑣 ∈ 𝑉 (𝐺) which may be determined by 𝑑𝑣𝑣 =

∑︀
𝑢∈𝑉 (𝐺)

𝑎𝑢𝑣.

Then the matrix ℒ = 𝐷 − 𝐴 is called the Laplace matrix or Laplacian of the graph 𝐺.
Associate with each graph𝐺𝑛 = 𝐶𝛽𝑛(𝑠1, . . . , 𝑠𝑘, 𝛼1𝑛, . . . , 𝛼ℓ𝑛) the associated Laurent

polynomial

𝐿(𝑧) = 2(𝑘 + ℓ)−
𝑘∑︁

𝑖=1

(𝑧𝑠𝑖 + 𝑧−𝑠𝑖)−
ℓ∑︁

𝑚=1

(𝑧𝛼𝑚𝑛 + 𝑧−𝛼𝑚𝑛),

describing the structure of the Laplace matrix ℒ of a given graph. Note that the numbering
of the vertices of a circulant graph 𝐺𝑛 may be chosen in such a way that the adjacency
matrix 𝐴 and the Laplace matrix ℒ of 𝐺𝑛 are circulant. Recall that a matrix of order 𝑛 is
called circulant if it has the form

circ(𝑥1, 𝑥2, . . . , 𝑥𝑛) =

⎛⎜⎜⎜⎜⎜⎝
𝑥1 𝑥2 𝑥3 . . . 𝑥𝑛

𝑥𝑛 𝑥1 𝑥2 . . . 𝑥𝑛−1

...
...

... . . . ...
𝑥2 𝑥3 𝑥4 . . . 𝑥0

⎞⎟⎟⎟⎟⎟⎠ .

This means the Laplacian of the graph 𝐺𝑛 may be defined as the matrix

ℒ = 𝐿(𝑇 ) = 2(𝑘 + ℓ)E−
𝑘∑︁

𝑖=1

(𝑇 𝑠𝑖 + 𝑇−𝑠𝑖)−
ℓ∑︁

𝑚=1

(𝑇𝛼𝑚𝑛 + 𝑇−𝛼𝑚𝑛),

where 𝑇 = circ(0, 1, 0, . . . , 0) is circulant matrix of order 𝛽𝑛, which represents the cyclic
shift operator 𝑇 : (𝑥1, 𝑥2, . . . , 𝑥𝛽𝑛−1, 𝑥𝛽𝑛) → (𝑥2, 𝑥3, . . . , 𝑥𝛽𝑛, 𝑥1), and E is the identity
matrix of the respective order. Fined the spectrum of the Laplace matrix. Suppose that 𝜆 be
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an eigenvalue ofℒ and 𝑣 be the respective eigenvector. As is known, then det(ℒ−𝜆E) = 0
and the following system of linear equations holds[︃

(2(𝑘 + ℓ)− 𝜆)E−
𝑘∑︁

𝑖=1

(𝑇 𝑠𝑖 + 𝑇−𝑠𝑖)−
ℓ∑︁

𝑚=1

(𝑇𝛼𝑚𝑛 + 𝑇−𝛼𝑚𝑛)

]︃
𝑣 = 0. (1)

Note that [9] the powers of the primitive root of unity 𝜁𝑗𝛽𝑛 are the eigenvalues of 𝑇 , here
𝑗 = 0, 1, . . . , 𝛽𝑛−1 and 𝜁ℓ = 𝑒𝑖

2𝜋
ℓ . This means that the matrix 𝑇 is similar to the diagonal

matrix T = diag(1, 𝜁𝛽𝑛, . . . , 𝜁
𝛽𝑛−1
𝛽𝑛 ) and the unit vectors e𝑗+1 = (0, . . . , 0, 1⏟ ⏞ 

𝑗+1−th

, 0, . . . , 0)

of length 𝛽𝑛 are Laplacian eigenvectors. The matrix of system (1) is written in diagonal
form [︃

(2(𝑘 + ℓ)− 𝜆)E−
𝑘∑︁

𝑖=1

(T𝑠𝑖 + T−𝑠𝑖)−
ℓ∑︁

𝑚=1

(T𝛼𝑚𝑛 + T−𝛼𝑚𝑛)

]︃
e𝑗 = 0.

From this relation it follows the eigenvalues 𝜆𝑗 of the Laplacian ℒ are given by the formula

𝜆𝑗 = 2(𝑘 + ℓ)−
𝑘∑︁

𝑖=1

(𝜁𝑗𝑠𝑖𝛽𝑛 + 𝜁−𝑗𝑠𝑖
𝛽𝑛 )−

ℓ∑︁
𝑚=1

(𝜁𝑗𝛼𝑚𝑛
𝛽𝑛 + 𝜁−𝑗𝛼𝑚𝑛

𝛽𝑛 ) = 𝐿(𝜁𝑗𝛽𝑛).

Recall the considered graph 𝐺𝑛 is assumed to be connected. This means that 𝜆0 = 0 and
𝜆𝑗 > 0 for 𝑗 = 1, 2, . . . , 𝛽𝑛− 1.

In conclusion of this section, we present Theorem and Lemma from the article [8]
which are necessary to prove the main result of this paper.

Theorem 1. The Kirchhoff index of the circulant graph 𝐺 = 𝐶𝑛(𝑠1, 𝑠2, . . . , 𝑠𝑘) can
be calculated as

𝐾𝑓𝐺 =
𝑛

12
𝑘∑︀

𝑖=1

𝑠2𝑖

⎛⎜⎜⎜⎝𝑛2 −

𝑘∑︀
𝑖=1

𝑠4𝑖

𝑘∑︀
𝑖=1

𝑠2𝑖

⎞⎟⎟⎟⎠+

𝑠𝑘∑︁
𝑝=2

𝑛2 𝒰𝑛−1(𝑤𝑝)

𝑄′(𝑤𝑝)(1− 𝒯𝑛(𝑤𝑝))
,

where𝑤𝑝 is a root of the polynomial𝑄(𝑤) =
𝑘∑︀

𝑗=1

(2−2𝒯𝑠𝑗(𝑤)) distinct from 1, where 𝒯𝑛(𝑤)

and 𝒰𝑛(𝑤) are the Chebyshev polynomials of the first and the second kind respectively.

Lemma 1. Consider two nonconstant polynomials 𝑃 (𝑤) and 𝑅(𝑤) of degrees 𝑛 and
𝑚, respectively. Denote the roots of 𝑃 (𝑤) by 𝛼1, 𝛼2, . . . , 𝛼𝑛 and the roots of 𝑅(𝑤) by
𝛽1, 𝛽2, . . . , 𝛽𝑚. Suppose that 𝑅(𝑤) lacks multiple roots and that 𝑃 (𝑤) and 𝑅(𝑤) lack
common roots. Then

𝑛∑︁
𝑗=1

1

𝑅(𝛼𝑗)
= −

𝑚∑︁
𝑗=1

1

𝑅′(𝛽𝑗)

𝑃 ′(𝛽𝑗)

𝑃 (𝛽𝑗)
.
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2. Kirchhoff index for circulant graph
In this section, an explicit analytical formula for the Kirchhoff index of a circulant

graph with non-fixed jumps is given. The formula contains a sum whose terms amount to
analytical expressions evaluated at the roots of a prescribed polynomial of degree 𝑠𝑘.

Consider the Laurent polynomial 𝐿(𝑧) for 𝐺𝑛 = 𝐶𝛽𝑛(𝑠1, . . . , 𝑠𝑘, 𝛼1𝑛, . . . , 𝛼ℓ𝑛) and
represent it as the sum 𝐿(𝑧) = 𝑃 (𝑧) + 𝑝(𝑧𝑛) of polynomials

𝑃 (𝑧) = 2𝑘 −
𝑘∑︁

𝑖=1

(𝑧𝑠𝑖 + 𝑧−𝑠𝑖), 𝑝(𝑧) = 2ℓ−
ℓ∑︁

𝑚=1

(𝑧𝛼𝑚 + 𝑧−𝛼𝑚).

Introduce the following set of polynomials

𝑃𝑢(𝑧) = 𝑃 (𝑧) + 𝑝(𝜁𝑢𝑛𝛽𝑛), 𝑢 = 0, 1, . . . , 𝛽𝑛− 1, (2)

Where it is easy to see that

𝑝(𝜁𝑢𝑛𝛽𝑛) = 4
ℓ∑︁

𝑚=1

sin2

(︂
𝑢𝛼𝑚𝜋

𝛽

)︂
.

Let 𝒯𝑛(𝑤) = cos𝑛𝜃 be the Chebyshev polynomial of the first kind [10], here 𝜃 = arccos𝑤.
Since the equality 𝒯𝑛

(︁
𝑧+𝑧−1

2

)︁
= 𝑧𝑛+𝑧−𝑛

2
satisfies for the Chebyshev polynomial 𝒯𝑛(𝑤),

the polynomial 𝑃 (𝑧) may be written as

𝑃 (𝑧) = 𝑄(𝑤) =
𝑘∑︁

𝑖=1

(2− 2𝒯𝑠𝑖(𝑤)),

where 𝑤 = 𝑧+𝑧−1

2
. Thus, for polynomials (2) the following representation is valid

𝑃𝑢(𝑧) = 𝑄𝑢(𝑤) =
𝑘∑︁

𝑖=1

(2− 2𝒯𝑠𝑖(𝑤)) + 4
ℓ∑︁

𝑚=1

sin2

(︂
𝑢𝛼𝑚𝜋

𝛽

)︂
.

Note that the roots of the polynomials 𝑃𝑢(𝑧) and 𝑄𝑢(𝑧) are related by the following fact.

Remark 1. If the quantities 𝑧𝑘, 1
𝑧𝑘

, for 𝑘 = 1, 2, . . . 𝑠, are the roots of the polynomial

𝑃𝑢(𝑧), then the numbers 𝑤𝑘 =
𝑧𝑘+𝑧−1

𝑘

2
are the roots of the polynomial 𝑄𝑢(𝑤).

Suppose that the polynomials 𝐿(𝑧) and 𝑄(𝑤) lack multiple zeros. Since eigenvalues
of the Laplacian 𝜆𝑗 = 𝐿(𝑒𝑖

2𝜋𝑗
𝛽𝑛 ) of the graph 𝐺𝑛, then

𝜆𝑗 = 𝑃𝑗(𝑒
𝑖 2𝜋𝑗
𝛽𝑛 ) = 𝑄

(︂
cos

2𝜋𝑗

𝛽𝑛

)︂
+ 4

ℓ∑︁
𝑚=1

sin2 𝑗𝛼𝑚𝜋

𝛽
.

Let us formulate the main Theorem of this article.
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Theorem 2. The Kirchhoff index of a graph𝐺𝑛 = 𝐶𝛽𝑛(𝑠1, . . . , 𝑠𝑘, 𝛼1𝑛, . . . , 𝛼ℓ𝑛) with
jumps 1 ⩽ 𝑠1 < . . . < 𝑠𝑘 <

[︀
𝛽𝑛
2

]︀
and 1 ⩽ 𝛼1 < . . . < 𝛼ℓ ⩽

[︀
𝛽
2

]︀
can be calculated using

the formula

𝐾𝑓𝐺𝑛 =
𝛽𝑛

12
𝑘∑︀

𝑖=1

𝑠2𝑖

⎛⎜⎜⎜⎝𝑛2 −

𝑘∑︀
𝑖=1

𝑠4𝑖

𝑘∑︀
𝑖=1

𝑠2𝑖

⎞⎟⎟⎟⎠+
∑︁

𝜔:𝑄(𝜔)=0
𝜔 ̸=1

𝛽2𝑛2 𝒰𝛽𝑛−1(𝜔)

𝑄′(𝜔)(1− 𝒯𝛽𝑛(𝜔))
,

where 𝑇𝛽𝑛(𝑤) and 𝒰𝛽𝑛−1(𝑤) are the Chebyshev polynomials of the first and the second
kind respectively.

Proof. Since Laplacian eigenvalues of the graph𝐺𝑛 are 𝜆𝑗 = 𝐿(𝑒𝑖
2𝜋𝑗
𝛽𝑛 ), then the Kirchhoff

index is written as

𝐾𝑓𝐺𝑛 = 𝛽𝑛

𝛽𝑛−1∑︁
𝑗=1

1

𝜆𝑗
= 𝛽𝑛

𝛽𝑛−1∑︁
𝑗=1

1

𝑄(cos 2𝜋𝑗
𝛽𝑛

) + 4
ℓ∑︀

𝑚=1

sin2 𝑗𝛼𝑚𝜋
𝛽

.

Let us introduce a substitution in the index of the series 𝑗 = 𝛽𝑡 + 𝑢, then 0 ⩽ 𝑡 ⩽ 𝑛 − 1
and 0 ⩽ 𝑢 ⩽ 𝛽 − 1. The Kirchhoff index may be rewritten by formula

𝐾𝑓𝐺𝑛 =
𝑛−1∑︁
𝑡=1

𝛽𝑛

𝑄(cos 2𝜋𝑡
𝑛
)
+

𝛽−1∑︁
𝑢=1

𝑛−1∑︁
𝑡=0

𝛽𝑛

𝑄(cos 2𝜋(𝛽𝑡+𝑢)
𝛽𝑛

) + 4
ℓ∑︀

𝑚=1

sin2 𝑢𝛼𝑚𝜋
𝛽

,

where the terms of type
𝑛−1∑︁
𝑡=1

𝑛

𝑄(cos 2𝜋𝑡
𝑛
)
= 𝐾𝑓𝐺

is Kirchhoff index 𝐾𝑓(𝐺) for a circulant graph with fixed jumps 𝐺. This means that it is
necessary to calculate only the sum

𝛽−1∑︁
𝑢=1

𝑛−1∑︁
𝑡=0

𝛽𝑛

𝑄(cos 2𝜋(𝛽𝑡+𝑢)
𝛽𝑛

) + 4
ℓ∑︀

𝑚=1

sin2 𝑢𝛼𝑚𝜋
𝛽

.

Note that the numbers 𝛼0
𝑡 = cos 2𝜋𝑡

𝑛
are all roots of the polynomial 𝒯𝑛(𝑤)−1, where 𝛽 = 1

and 𝑡 = 1, 2, . . . , 𝑛. Then the numbers 𝛼𝑢
𝑡 = cos 2𝜋(𝛽𝑡+𝑢)

𝛽𝑛
are roots for the polynomial

𝒯𝛽𝑛(𝑤)−1

𝒯𝑛(𝑤)−1
. Introduce the following notations

𝑃 (𝑤) = 𝒯𝛽𝑛(𝑤)− 1, 𝑅(𝑤) = 𝑄(𝑤) + 4
ℓ∑︁

𝑚=1

sin2 𝑢𝛼𝑚𝜋

𝛽
.
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Denote the roots of 𝑃 (𝑧) by 𝛼𝑢
𝑡 , here 𝑡 = 1, 2, . . . , 𝑛, and 𝑢 = 1, 2, . . . , 𝛽 − 1, the roots

of 𝑅(𝑤) by 𝛽𝑢
𝑗 where 𝑗 = 1, 2, . . . , 𝑞 and 𝑢 = 1, 2, . . . , 𝛽 − 1. Note that

𝑅(𝛼𝑢
𝑡 ) = 𝑄(𝛼𝑢

𝑡 ) + 4
ℓ∑︁

𝑚=1

sin2 𝑢𝛼𝑚𝜋

𝛽
> 0,

in other words, the polynomial 𝑅(𝑤) does not vanish at the roots of polynomial 𝑃 (𝑤).
It follows from this that the polynomials 𝑃 (𝑤) and 𝑅(𝑤) lack common roots. Observe
𝑃 ′(𝑤) = 𝛽𝑛𝒰𝛽𝑛−1(𝑤) and 𝑅′(𝑤) = 𝑄′(𝑤). According to Lemma 1, the equality holds

𝛽−1∑︁
𝑢=1

𝑛−1∑︁
𝑡=0

1

𝑅(𝛼𝑢
𝑡 )

=

𝛽−1∑︁
𝑢=1

𝑞∑︁
𝑗=1

𝛽𝑛𝒰𝛽𝑛−1(𝛽
𝑢
𝑗 )

𝑄′(𝛽𝑢
𝑗 )(1− 𝒯𝛽𝑛(𝛽𝑢

𝑗 ))
,

Thus, we obtain

𝐾𝑓𝐺𝑛 = 𝛽𝐾𝑓𝐺 +

𝛽−1∑︁
𝑢=1

𝑞∑︁
𝑗=1

𝛽2𝑛2 𝒰𝛽𝑛−1(𝛽
𝑢
𝑗 )

𝑄′(𝛽𝑢
𝑗 )(1− 𝒯𝛽𝑛(𝛽𝑢

𝑗 ))
.

Combining formula (1) for𝐾𝑓𝐺 with the obtained formula we get the required result. ■
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Аннотация. Рассматривается инвариант графа, называемый индексом Кирхгоффа.
Определяется явная аналитическая формула индекса Кирхгоффа для циркулянтных
графов с нефиксированными скачками.
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