Математические структуры и моделирование 2023. № 2 (66). С. 4–14

УДК 621.929.7:517.9 DOI 10.24147/2222-8772.2023.2.4-14

ВЛИЯНИЕ КОЭФФИЦИЕНТА ТРЕНИЯ И УГЛА ВИБРАЦИЙ НА ЭФФЕКТИВНОСТЬ ВИБРОТРАНСПОРТИРОВАНИЯ В РЕЖИМАХ ДВИЖЕНИЯ С ПОДБРАСЫВАНИЕМ

А.В. Архипенко¹ канд. техн. наук, доцент, e-mail: iten-miu@mail.ru **А.Д. Ниров**^{1,2} канд. техн. наук, доцент, e-mail: nirovaslan@list.ru

¹Международный инновационный университет, Сочи, Россия

²Кубанский государственный технологический университет, Краснодар, Россия

Аннотация. Представлены теоретические исследования вибрационного транспортирования сыпучего материала. Рассмотрена зависимость скорости вибротранспортирования от коэффициента трения материала по грузонесущей поверхности.

Ключевые слова: вибрационное транспортирование, вибромашины, фазовый угол, период колебаний, коэффициент передачи горизонтальной составляющей скорости.

В последнее время всё более широко применяются транспортирующие, транспортно-подающие и транспортно-технологические машины, использующие принцип вибрационного транспортирования [1, 2]. Это связано с тем, что такие машины легко встраиваются в автоматизированные технологические линии, позволяют использовать герметичные рабочие органы, не подверженные влиянию горячих абразивных сыпучих материалов [3, 4] и требуют относительно небольших затрат на их содержание и ремонт [5–7].

Движение частицы сыпучего материала по грузонесущей виброповерхности, в зависимости от соотношения сил инерции и сил трения, происходит либо в виде подбрасывания, когда частица периодически теряет с ней контакт, либо в виде скольжения [4, 8].

Уравнения движения частицы массой *m* по виброповерхности в подвижной системе координат *XOY* имеют вид:

$$\begin{cases} m\ddot{E} = mA^2\cos\left(\alpha + \beta\right)\sin\omega t + F_{mp} - mg\sin\alpha\\ m\ddot{y} = mA^2\sin\beta\sin\omega t - mg\cos\alpha + N \end{cases},$$
(1)

где α – угол наклона виброповерхности к горизонту; β , A, ω – угол вибрации, амплитуда и частота колебаний; F_{mp} – сила трения, действующая на частицу; N – нормальная реакция, действующая на частицу со стороны виброповерхности.

Дифференциальные уравнения полёта частицы над плоскостью получаются из уравнения (1) при условии, что N = 0 и $F_{mp} = 0$.

$$\begin{cases} \ddot{x} = A\omega^2 \cos\beta \sin\omega t \\ \ddot{y} = A\omega^2 \sin\beta \sin\omega t - g \end{cases}.$$
(2)

В случае абсолютно неупругого удара необходимым и достаточным условием движения частицы с подбрасыванием является неравенство [5]

$$K_p = \frac{A\omega^2 \sin\beta}{q\cos\alpha} > 1.$$

Рассмотрим режимы движения частицы с подбрасыванием и пребыванием её на плоскости при $1 < K_p < 2$.

Скорость скольжения и перемещения за этап скольжения определяется равенствами:

$$\dot{x}(t) = -A\omega\cos\beta (1 \pm K_f) (\cos\omega t_{\pm} - \cos\omega t^*) \mp fg(t_{\pm} - t^*) + \dot{x}^*,$$
$$x(t) = A\omega\cos\beta (1 \pm K_f) \cos\omega t^* (t_{\pm} - t^*) -$$
$$-A\cos\beta (1 \pm K_f) (\sin\omega t_{\pm} - \sin\omega t^*) \mp fg \frac{(t_{\pm} - t^*)^2}{2} + \dot{x}^* (t_{\pm} - t^*).$$

Для горизонтальной и вертикальной составляющих скорости полёта частицы и её перемещения за этап полёта проведём интегрирование уравнений (2) при начальных условиях:

$$\begin{array}{l} x \left(t_{0}^{*} \right) = 0 \\ \dot{x} \left(t_{0}^{*} \right) = \dot{x}_{0}^{*} \\ y \left(t_{0}^{*} \right) = 0 \\ \dot{y} \left(t_{0}^{*} \right) = \dot{y}_{0}^{*} \end{array}$$

где \dot{x}_0^* и \dot{y}_0^* – проекции вектора скорости частицы на момент отрыва $t = t_0^*$.

Выполнив интегрирование, получим проекции скорости и перемещения частицы при полёте на оси подвижной системы координат:

$$\begin{split} \dot{x}\left(t\right)_{\Pi \mathbf{O}\Pi} &= -A\omega\cos\beta\left(\cos\omega t - \cos\omega t_{0}^{*}\right) + \dot{x}_{0}^{*},\\ x\left(t\right)_{\Pi \mathbf{O}\Pi} &= -A\cos\beta\left(\sin\omega t - \sin\omega t_{0}^{*}\right) + A\cos\beta\left(\omega t - \omega t_{0}^{*}\right)\cos\omega t_{0}^{*} + \dot{x}_{0}^{*}\left(t - t_{0}^{*}\right),\\ \dot{y}\left(t\right)_{\Pi \mathbf{O}\Pi} &= -A\omega\sin\beta\left(\cos\omega t - \cos\omega t_{0}^{*}\right) - g\left(t - t_{0}^{*}\right) + \dot{y}_{0}^{*},\\ y\left(t\right)_{\Pi \mathbf{O}\Pi} &= -A\sin\beta\left(\sin\omega t - \sin\omega t_{0}^{*}\right) + A\sin\beta\left(\omega t - \omega t_{0}^{*}\right)\cos\omega t_{0}^{*} - g\frac{\left(t - t_{0}^{*}\right)^{2}}{2} + \\ + \dot{y}_{0}^{*}\left(t - t_{0}^{*}\right). \end{split}$$

Эти уравнения определяют движение частицы до тех пор, пока она не упадёт на поверхность. Этот момент определяется приравниванием к нулю уравнения (3), как наиболее близкого к t_0^* корня.

(3)

Рис. 1. Первый режим движения частицы с подбрасыванием

Для определения средней скорости движения частицы необходимо вычислить её перемещение за время одного цикла S_T .

Определение характера установившегося режима движения производим следующим образом. Задавшись величиной коэффициента режима работы, определяем фазовый угол начала этапа полёта:

$$\varphi_0 = \arcsin \frac{1}{K_p}.\tag{4}$$

Находим фазовый угол окончания этапа полёта φ_n .

Затем предполагая, что горизонтальная составляющая скорости в начальный момент полёта равна нулю, т. е. что отрыв частицы от плоскости происходит без относительного скольжения, вычисляем значение горизонтальной составляющей скорости полёта в момент падения частицы на плоскость:

$$\dot{x}_{\Pi O \Pi} = -A\omega \cos \beta \left(\cos \varphi_n - \cos \varphi_0 \right).$$

Далее графическим способом определяем фазовый угол момента отрыва частицы, и, задаваясь этим значением, – её скорость \dot{x}_{0}^{*} , соответствующую этому моменту. Далее вычисляется горизонтальная скорость частицы в момент падения её на плоскость:

$$\dot{x}'_{\Pi \mathbf{O} \Pi} = -A\omega \cos\beta \left(\cos\varphi_n - \cos\varphi_0\right) + \dot{x}^*_0.$$

Графические построения и вычисления повторяются до получения установившегося режима движения частицы.

Возможны четыре основных режима движения частицы по грузонесущему органу, которые характеризуются различными сочетаниями этапов относительного движения: полёта, скольжения вперёд, скольжения назад и относительного покоя при совместном движении.

Первый режим (рис. 1) состоит из четырёх последовательных этапов:

- 1. Скольжение вперёд ($\varphi_0 \delta_+$).
- 2. Полёт ($\varphi \varphi_0$).
- 3. Скольжение вперёд ($\varphi_{+0} \varphi$).
- 4. Совместное движение ($\delta_+ + 2\pi \varphi_{+0}$).

Одна длительная остановка в этом режиме следует после второго скольжения частицы вперёд.

Перемещение частицы на участке скольжения перед полётом:

$$S'_{+} =$$

$$= A\cos\beta \left(1 + K_{f}\right) \left[-z_{+} \frac{\left(\varphi_{0} - \delta_{+}\right)^{2}}{2} + \left(\varphi_{0} - \delta_{+}\right) \cos\delta_{+} - \left(\sin\varphi_{0} - \sin\delta_{+}\right) \right].$$
(5)

Перемещение частицы на участке полёта:

$$S_{\Pi O \Pi} = -A \cos \beta \left(\sin \varphi_n - \sin \varphi_0 \right) + A \cos \beta \left(1 + K_f \right) \left(\varphi_? - \varphi_0 \right) \left[-z_+ \left(\varphi_0 - \delta_+ \right) - \left(\cos \varphi_0 - \cos \delta_+ \right) \right].$$
(6)

Перемещение частицы на участке скольжения вперёд после полёта:

$$S''_{+} =$$

$$= A\cos\beta\left(1+K_f\right) \left\{ \begin{array}{l} \left[-z_+\frac{(\varphi_{+0}-\varphi_n)^2}{2} + (\varphi_{+0}-\varphi_n)\cos\varphi_n - (\sin\varphi_{+0}-\sin\varphi_n)\right] + \\ (\varphi_{+0}-\varphi_?)\left[-z_+(\varphi_0-\delta_+) - (\cos\varphi_0-\cos\delta_+)\right] \\ -A\cos\beta\left(\varphi_{+0}-\varphi_n\right)\left(\cos\varphi_n - \cos\varphi_0\right). \end{array} \right\} \right\}$$

Перемещение частицы за период:

$$S_T = S'_+ + S_{\Pi O \Pi} + S''_+.$$

Средняя скорость движения частицы определяется её перемещением

$$V_{\rm cp} = \frac{S_T}{2\pi}\omega = \frac{S_{\Pi O\Pi} + \sum S_{\rm CK}}{2\pi}\omega.$$
 (7)

Второй режим (рис. 2) состоит из пяти последовательных этапов:

- 1. Скольжение вперёд ($\varphi_0 \delta_+$).
- 2. Полёт ($\varphi \delta_0$).
- 3. Скольжение вперёд ($\varphi_{+-} \varphi$).
- 4. Скольжение назад ($\varphi_{-0} + 2\pi \varphi_{+-}$) и ($\varphi_{-0} \varphi_{+-}$).
- 5. Совместное движение ($\delta_{+} \varphi_{-0}$) и ($\delta_{+} + 2\pi \varphi_{-0}$).

Особенностью этого режима является наличие одной длительной остановки после скольжения частицы назад.

На участке скольжения частицы вперёд перемещение перед полётом определяется по формуле (5), а перемещение на участке полёта – по формуле (6).

Рис. 2. Второй режим движения частицы с подбрасыванием

Перемещение частицы на участке скольжения вперёд после полёта

 $S_+'' =$

$$= A\cos\beta\left(1+K_f\right) \left\{ \begin{array}{l} \left[-z_+\frac{(\varphi_{+-}-\varphi_n)^2}{2} + (\varphi_{+-}-\varphi_n)\cos\varphi_n - (\sin\varphi_{+-}-\sin\varphi_n)\right] + \\ (\varphi_{+-}-\varphi_n)\left[-z_+(\varphi_0-\delta_+) - (\cos\varphi_0-\cos\delta_+)\right] \\ -A\cos\beta\left(\varphi_{+-}-\varphi_n\right)(\cos\varphi_n-\cos\varphi_0)\,. \end{array} \right\}$$

Перемещение частицы на участке скольжения назад:

 $S_{-} =$

$$= A\cos\beta \left(1 + K_{f}\right) \left[-z_{-} \frac{\left(\varphi_{-0} - \varphi_{+-}\right)^{2}}{2} + \left(\varphi_{-0} - \varphi_{+-}\right)\cos\varphi_{+-} - \left(\sin\varphi_{-0} - \sin\varphi_{0-}\right) \right]$$

ИЛИ

$$S_{-} = A\cos\beta \left(1 + K_{f}\right) \begin{bmatrix} -z_{-}\frac{(\varphi_{-0} + 2\pi - \varphi_{+-})^{2}}{2} + (\varphi_{-0} + 2\pi - \varphi_{+-})\cos\varphi_{+-} \\ -(\sin\varphi_{-0} - \sin\varphi_{0-}) \end{bmatrix}$$

Перемещение частицы за полный период колебаний при втором режиме

$$S'' = S'_{+} + S_{\Pi O \Pi} + S''_{+} + S_{-}.$$
(8)

Третий режим (рис. 3) так же как и первый состоит из четырёх этапов:

- 1. Скольжение вперёд ($\varphi_0 \varphi_{-+}$).
- 2. Полёт ($\varphi_n \varphi_0$).
- 3. Скольжение вперёд ($\varphi_{+-} \varphi_n$).
- 4. Скольжение назад ($\varphi_{-+} + 2\pi \varphi_{+-}$).

Перемещение частицы за этап скольжения вперёд:

$$S'_{+} = A\cos\beta(1+K_{f}) \left[-z_{+} \frac{(\varphi_{0} - \varphi_{-+})^{2}}{2} + (\varphi_{0} - \varphi_{-+})\cos\varphi_{-+} - (\sin\varphi_{0} - \sin\varphi_{-+}) \right]$$
(9)

Рис. 3. Третий режим движения частицы с подбрасыванием

Перемещение частицы за этап полёта:

$$S_{\Pi O \Pi} = A \cos \beta (1 + K_f) (\varphi_n - \varphi_0) [-z_+ (\varphi_0 - \varphi_{-+}) - (\cos \varphi_0 - \cos \varphi_{-+})] - -A \cos \beta (\sin \varphi_n - \sin \varphi_0) + A \cos \beta (\varphi_n - \varphi_0) \cos \varphi_0.$$
(10)

Перемещение частицы за этап скольжения вперёд после полёта:

$$S''_{+} =$$

$$= A\cos\beta(1+K_f) \left\{ \begin{array}{l} -z_+ \frac{(\varphi_{+-}-\varphi_n)^2}{2} + (\varphi_{+-}-\varphi_n)\cos\varphi_n - (\sin\varphi_{+-}-\sin\varphi_n) \\ +(\varphi_{+-}-\varphi_n)[-z_+(\varphi_0-\varphi_{-+}) - (\cos\varphi_0-\cos\varphi_{-+})] \\ -A\cos\beta(\varphi_{+-}-\varphi_n)(\cos\varphi_n-\cos\varphi_0). \end{array} \right\} -$$
(11)

Перемещение частицы за этап скольжения назад после мгновенной остановки:

$$S_{-} = A\cos\beta(1+K_{f}) \begin{bmatrix} -z_{-}\frac{(\varphi_{-+}+2\pi-\varphi_{+-})^{2}}{2} + (\varphi_{-+}+2\pi-\varphi_{+-})\cos\varphi_{+-} \\ -(\sin\varphi_{-+}-\sin\varphi_{+-}) \end{bmatrix}.$$
 (12)

Суммарное перемещение частицы в этом режиме за весь период колебаний определяется по выражению (8), в котором S'_+ , $S_{\Pi O \Pi}$, S''_+ и S_- находятся из формул (9)–(12).

Четвёртый режим (рис. 4) характеризуется тремя этапами движения частицы:

- 1. Полёт $(\varphi_n \varphi_0)$.
- 2. Скольжение вперёд после полёта ($\varphi_{+-} \varphi_n$).
- 3. Скольжение назад после мгновенной остановки ($\varphi_0 + 2\pi \varphi_{+-}$).

Рис. 4. Четвёртый режим движения частицы с подбрасыванием

Скольжение назад при этом режиме прерывается в начале этапа полёта. Перемещение частицы за этап полёта:

$$S_{\Pi O \Pi} = A \cos \beta (1 - K_f) (\varphi_n - \varphi_0) [-z_-(\varphi_0 + 2\pi - \varphi_{+-}) - (\cos \varphi_0 - \cos \varphi_{+-})] - A \cos \beta (\sin \varphi_n - \sin \varphi_0) + A \cos \beta (\varphi_n - \varphi_0) \cos \varphi_0.$$

Перемещение частицы за этап скольжения вперёд после падения её на плоскость:

 $S_{+} =$

$$= A\cos\beta(1+K_f)\left[-z_+\frac{(\varphi_{+-}-\varphi_n)^2}{2} + (\varphi_{+-}-\varphi_n)\cos\varphi_n - (\sin\varphi_{+-}-\sin\varphi_n)\right] + A\cos\beta(1-K_f)\left[-z_-(\varphi_0+2\pi-\varphi_{+-}) - (\cos\varphi_0-\cos\varphi_{+-})\right](\varphi_{+-}-\varphi_n) - A\cos\beta(\varphi_{+-}-\varphi_n)(\cos\varphi_n-\cos\varphi_0).$$

Перемещение частицы за этап скольжения назад после мгновенной остановки:

$$S_{-} = A\cos\beta(1+K_f) \begin{bmatrix} -z_{-}\frac{(\varphi_0+2\pi-\varphi_{+-})^2}{2} + (\varphi_0+2\pi-\varphi_{+-})\cos\varphi_{+-} \\ -(\sin\varphi_0-\sin\varphi_{+-}) \end{bmatrix}.$$
 (13)

Полное перемещение частицы за период колебаний при четвёртом режиме движения:

$$S'' = S_{\Pi O \Pi} + S_+ + S_-. \tag{14}$$

Формула для вычисления средней скорости движения частицы в режимах скольжения имеет вид [8]:

$$V_{cp_i} = A\omega K_{zi},\tag{15}$$

где K_z – коэффициент передачи скорости, i – номер режима.

Если привести к такому же виду формулу (7) для вычисления средней скорости движения частицы в режимах движения с подбрасыванием, коэффициент передачи скорости примет значения для первого режима:

$$K_{z1} = \frac{\cos\beta}{2\pi} (1+K_f) \begin{cases} -z_{+} \left[\frac{(\varphi_{0}-\delta_{+})^{2}}{2} + \frac{(\varphi_{+0}-\varphi_{n})^{2}}{2} + (\varphi_{0}-\delta_{+})(\varphi_{+0}-\varphi_{n}) \right] \\ -(\varphi_{+0}-\varphi_{0})\cos\varphi_{0} + (\varphi_{+0}-\delta_{+})\cos\delta_{+} + (\varphi_{+0}-\varphi_{n})\cos\varphi_{n} \\ -(\sin\varphi_{0}-\sin\delta_{+}) - (\sin\varphi_{+0}-\sin\varphi_{n}) \\ +\frac{1}{(1+K_{f})} \left[(\varphi_{n}-\varphi_{0})\cos\varphi_{0} - (\varphi_{+0}-\varphi_{n})(\cos\varphi_{n}-\cos\varphi_{0}) \\ -(\sin\varphi_{n}-\sin\varphi_{0}) \right] \end{cases} ;$$
(16)

для второго режима:

$$K_{z2} = \frac{\cos\beta}{2\pi} (1+K_f) \begin{cases} -z_{+} \left[\frac{(\varphi_{0}-\delta_{+})^{2}}{2} + \frac{(\varphi_{+-}-\varphi_{n})^{2}}{2} + (\varphi_{n}-\delta_{+})(\varphi_{+-}-\varphi_{n}) \right] \\ + (\varphi_{0}-\varphi_{+-})\cos\varphi_{0} + (\varphi_{+-}-\delta_{+})\cos\delta_{+} + (\varphi_{+-}-\varphi_{n})\cos\varphi_{n} \\ - (\sin\varphi_{0}-\sin\delta_{+}) - (\sin\varphi_{+-}-\sin\varphi_{n}) \\ - (\sin\varphi_{0}-\sin\phi_{+-})\cos\varphi_{0} - (\varphi_{+-}-\varphi_{n})(\cos\varphi_{n}-\cos\varphi_{0}) \\ - (\sin\varphi_{n}-\sin\varphi_{0}) \\ + \frac{(1-K_{f})}{(1+K_{f})} \left[\frac{-z_{-}\frac{(\varphi_{-0}-\varphi_{+-})^{2}}{2} + (\varphi_{-0}-\varphi_{+-})\cos\varphi_{+-} \\ - (\sin\varphi_{-0}-\sin\varphi_{+-}) \end{array} \right] \end{cases}$$
(17)

для третьего режима:

$$K_{z3} = \frac{\cos\beta}{2\pi} (1+K_f) \begin{cases} -z_{+} \left[\frac{(\varphi_{0}-\varphi_{-+})^{2}}{2} + \frac{(\varphi_{+-}-\varphi_{n})^{2}}{2} + (\varphi_{0}-\varphi_{-+})(\varphi_{+-}-\varphi_{0}) \right] \\ + (\varphi_{+-}-\varphi_{n})\cos\varphi_{b} + (\varphi_{+-}-\varphi_{-+})\cos\varphi_{-+} - (\varphi_{+-}-\varphi_{0})\cos\varphi_{0} \\ - (\sin\varphi_{0}-\sin\varphi_{-+}) - (\sin\varphi_{+-}-\sin\varphi_{n}) \\ + \frac{1}{(1+K_{f})} \left[(\varphi_{n}-\varphi_{0})\cos\varphi_{0} - (\varphi_{+-}-\varphi_{n})(\cos\varphi_{n}-\cos\varphi_{0}) \\ - (\sin\varphi_{n}-\sin\varphi_{0}) \\ - (\sin\varphi_{n}-\sin\varphi_{0}) \\ + \frac{(1-K_{f})}{(1+K_{f})} \left[\frac{-z_{-}\frac{(\varphi_{-+}+2\pi-\varphi_{+-})^{2}}{2} + (\varphi_{-+}+2\pi-\varphi_{+-})\cos\varphi_{+-} \\ - (\sin\varphi_{-+}-\sin\varphi_{+-}) \\ \end{array} \right] \end{cases}$$
(18)

для четвёртого режима:

$$K_{z4} = \frac{\cos\beta}{2\pi} (1 - K_f) \begin{cases} -z_{-} \left[\frac{(\varphi_0 + 2\pi - \varphi_{\pm})^2}{2} + (\varphi_0 + 2\pi - \varphi_{\pm}) (\varphi_{\pm} - \varphi_0) \right] \\ -(\varphi_{\pm} - \varphi_0) \cos\varphi_0 + (\varphi_{\pm} - \varphi_{\mp}) \cos\varphi_{\mp} - (\varphi_{\pm} - \varphi_0) \cos\varphi_0 \\ -(\sin\varphi_0 - \sin\varphi_{\mp}) - (\sin\varphi_{\pm} - \sin\varphi_n) + 2\pi\cos\varphi_{\pm -} \\ -(\sin\varphi_0 - \sin\varphi_{\pm -}) \\ +\frac{1}{(1 - K_f)} \left[\frac{(\varphi_n - \varphi_0) \cos\varphi_0 - (\varphi_{\pm -} - \varphi_n) (\cos\varphi_n - \cos\varphi_0)}{-(\sin\varphi_n - \sin\varphi_0)} \right] \\ +\frac{(1 + K_f)}{(1 - K_f)} \left[\frac{-z_{+} \frac{(\varphi_{\pm -} - \varphi_n)^2}{2} + (\varphi_{\pm -} - \varphi_n) \cos\varphi_n}{-(\sin\varphi_{\pm -} - \sin\varphi_n)} \right] \end{cases}$$
(19)

Практическое использование громоздких формул (16)–(19) при вычислении скорости вибротранспортирования затруднительно ввиду необходимости определения фазовых углов моментов смены этапов движения для каждого конкретного случая и установления режима движения.

Поэтому для режимов движения частицы с подбрасыванием также целесообразно вычислить возможные значения K_z и построить соответствующие графики для зависимости коэффициента передачи скорости от коэффициента режима работы K_p и угла вибрации β .

Для построения графиков по формуле (4) определяется фазовый угол отрыва частицы от плоскости φ_0 по известным значениям β и K_p . По известному значению

фазового угла начала этапа полёта находим фазовый угол окончания этапа полёта частицы – угол падения частицы на плоскость φ_n . Затем, задавшись величиной коэффициента трения f, используя поэтапное интегрирование, определяем характер установившегося движения и все фазовые углы моментов перехода от одного этапа движения частицы к другому. Далее по одной из формул (14)–(17), в соответствии с выявленным установившимся режимом движения частицы, вычисляем значение коэффициента передачи скорости K_z . Задаваясь последовательно другими значениями коэффициента трения при постоянных K_p и β , получим серию точек для построения графика зависимости $K_z = F(f)$.

Производя аналогичные вычисления для других значений коэффициентов режима работы в пределах $1 < K_p < 2$ при $\beta = 30^\circ$, получим серию кривых, выражающих зависимость $K_z = F(f)$ при фиксированных значениях K_p .

Построения графиков зависимости $K_z = F(f)$ для других значений углов вибраций β производим, воспользовавшись тем, что значения коэффициентов передачи скорости, определяемые равенствами (18)–(19), остаются неизменными при постоянном значении K_p при условии $f \cdot tg\beta = const$, т. к. углы отрыва и падения в этом случае остаются неизменными. С помощью таких графиков можно вычислять теоретические значения скорости вибротранспортирования по известным значениям A, ω, β, f при заданном значении K_p по формуле (13), в которую подставляются значения K_z , взятые из графиков.

Формула для определения средней скорости получена при предположении, что коэффициенты трения покоя и движения равны и что удар частицы о плоскость абсолютно неупругий (коэффициент восстановления вертикальной составляющей скорости частицы при падении её на плоскость равен нулю), что вполне допустимо для режимов работы вибротранспортирующих машин, характеризуемых величиной $1 < K_p < 2$.

Формула не учитывает сопротивлений движению слоя транспортируемого груза и может применяться для ориентировочного вычисления средней скорости движения зернистых сыпучих материалов, имеющих хорошую воздухопроницаемость.

Для применения этой формулы в практических расчётах требуется введение дополнительных поправочных коэффициентов, учитывающих сопротивления движению слоя транспортируемого материала.

Анализ графиков позволяет сделать вывод, что при K_p близком ко 2-му коэффициенту трения реальных материалов в пределах 0,4...1,0 мало влияет на коэффициент передачи скорости и при $K_p \ge 2$ может не учитываться.

Для вычисления значений коэффициента передачи скорости при $K_p \ge 2$ можно пренебречь скольжением частицы вперёд и назад после падения её на плоскость и принять, что горизонтальная составляющая относительной скорости движения частицы в момент её отрыва равной нулю. Тогда перемещение частицы за период колебаний будет равно её перемещению за этап полёта при начальной скорости, равной нулю.

$$S_T = S_{\Pi O \Pi} = A \cos \beta (\varphi_n - \varphi_0) \cos \varphi_0 - A \cos \beta (\sin \varphi_n - \sin \varphi_0).$$

Выражение для приближенного вычисления средней скорости движения частицы

будет иметь вид:

$$V_{cp} = A\omega \cos\beta \frac{1}{2\pi} \left[(\varphi_n - \varphi_0) \cos\varphi_0 - (\sin\varphi_n - \sin\varphi_0) \right].$$

Для режимов с непрерывным подбрасыванием, когда $\varphi_n - \varphi_0 = 2\pi$, $\sin \varphi_n = \sin \varphi_0$, эта формула будет иметь вид:

$$V_{cp} = A\omega\cos\beta\cos\varphi_0$$

или

$$V_{cp} = A\omega\cos\beta\sqrt{1 - Sin^2\varphi_0}.$$

С учётом того, что $\sin \varphi_0 = 1/K_p$, получим формулу В.А. Баумана [1]:

$$V_{cp} = A\omega Cos\beta \sqrt{1 - \frac{1}{K_p^2}}.$$
(20)

Анализируя полученные графики, выявляем, что коэффициент передачи горизонтальной составляющей скорости при коэффициенте режима работы $K_p \ge 2$ принимает значения $K_z \ge 2$. С учётом этого формула (20) примет вид:

$$V_{cp} = 0.95 A\omega \cos\beta$$

или, умножая на

$$\frac{g\omega\sin\beta}{g\omega\sin\beta},$$

получаем

$$V_{cp} = 0.95 K_p \frac{30g}{\pi n \cdot tg\beta}.$$

Для частного случая при режиме работы с непрерывным подбрасыванием при $K_p = 3,5$ эта формула примет вид формулы И.И. Блехмана [4]:

$$V_{cp} = \frac{30g}{n \cdot tg\beta}.$$

Это подтверждает правильность данных теоретических исследований и их пригодность для оценки и учёта влияния коэффициента трения реальных сыпучих грузов по грузонесущей поверхности на эффективность вибротранспортирования при выборе параметров колебаний рабочего органа.

Литература

- 1. Бауман В.А., Быховский И.И. Вибрационные машины и процессы в строительстве. М. : Высшая школа, 1977. 255 с.
- 2. Гончаревич И.Ф., Гудушаури Э.Г., Гаврилина Л.В., Леонова О.В. Совершенствование оборудования и процессов вибрационного перемещения грузов // Подъёмнотранспортное дело. 2016. № 4–5(86). С. 2–4.

- Архипенко В.П., Архипенко А.В. Виброударные обрабатывающие машины (ВУОМ) // Труды VIII международной научно-технической конференции «Вибрации в технике и технологиях». Днепропетровск, 2007.
- 4. Бельков Н.И. Исследование закономерностей и особенностей вибрационного перемещения тонкоизмельченных сыпучих материалов: дисс. канд. техн. наук. Ленинград, 1974. 178 с.
- 5. Денискина Т.В. Теоретическое исследование движения материала на вибрирующей поверхности под действием направленных колебаний // Горный информационноаналитический бюллетень (научно-технический журнал). 2014. № 1. С. 384–389.
- Рокосов С.Ю., Злобин С.В., Рынза О.П. Определение скорости перемещения муки по лотку винтового вибрационного конвейера // Инновационный конвент «Кузбасс: Образование, наука, инновации». Кемерово : Кемеровский государственный университет, 2011. С. 46–47.
- 7. Бабичев А.П., Бабичев И.А. Основы вибрационной технологии. Ростов н/Д : Издательский центр ДГТУ, 2008. 694 с.
- 8. Архипенко А.В. Скольжение частиц грунта по рабочим органам вибромашин // Математические структуры и моделирование. 2023. № 1(65). С. 4–14.

THE EFFECT OF THE COEFFICIENT OF FRICTION AND THE VIBRATION ANGLE ON THE EFFICIENCY OF VIBRATION TRANSPORT IN THE MODES OF MOTION WITH TOSSING

A.V. Arhipenko¹ Ph.D. (Techn.), Associate Professor, e-mail: iten-miu@mail.ru A.D. Nirov^{1,2} Ph.D. (Techn.), Associate Professor, e-mail: nirovaslan@list.ru

¹International Innovation University, Sochi, Russia ²Kuban State Technological University, Krasnodar, Russia

Abstract. Theoretical studies of vibrational transportation of bulk material are presented. The dependence of the speed of vibration transport on the coefficient of friction of the material on the load-bearing surface is considered.

Keywords: vibration transportation, vibratory machines, phase angle, oscillation period, transmission coefficient of the horizontal component of the velocity.

Дата поступления в редакцию: 05.05.2023