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Alexandrov’s Math Is Great and Alive

The Mathematics Subject Classification, pro-

S.S. Kutateladze

duced jointly by the editorial staffs of Mathematical
Reviews and Zentralblatt für Mathematik in 2020,
has Section 53C45 “Global surface theory (convex
surfaces à la A. D. Aleksandrov)”.

Good mathematics starts as a first love. If great,
it turns into adult sex and happy marriage. If or-
dinary, it ends in dumping, cheating, or divorce. If
awesome, it becomes eternal. Alexandrov’s mathe-
matics is great. To demonstrate, inspect his solution
of the Minkowski problem.

Alexandrov’s mathematics is alive, expanding and
flourishing for decades. Dido’s problem and its
present-day next of kin is one of the examples we

will elaborate below.

The Space of Convex Bodies

A convex figure is a compact convex set. A convex body is a solid convex
figure. The Minkowski duality identifies a convex figure 𝑆 in 𝑅𝑁 and its support
function 𝑆(𝑧) := sup{(𝑥, 𝑧) | 𝑥 ∈ 𝑆} for 𝑧 ∈ R𝑁 . Considering the members of R𝑁

as singletons, we assume that R𝑁 lies in the set V𝑁 of all compact convex subsets
of R𝑁 .

The Minkowski duality makes V𝑁 into a cone in the space 𝐶(𝑆𝑁−1) of contin-
uous functions on the Euclidean unit sphere 𝑆𝑁−1, the boundary of the unit ball
z𝑁 . The linear span [V𝑁 ] of V𝑁 is dense in 𝐶(𝑆𝑁−1), bears a natural structure of
a vector lattice and is usually referred to as the space of convex sets.

The study of this space stems from the pioneering breakthrough of Alexandrov
in 1937 [1] and the further insights of Radström, Hörmander, and Pinsker [2].
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Alexandrov Measures

Alexandrov proved the unique existence of a translate of a convex body given
its surface area function, thus completing the solution of the Minkowski problem.
Each surface area function is an Alexandrov measure. So we call a positive
measure on the unit sphere which is supported by no great hypersphere and which
annihilates singletons.

Each Alexandrov measure is a translation-invariant additive functional over the
cone V𝑁 . The cone of positive translation-invariant measures in the dual 𝐶 ′(𝑆𝑁−1)
of 𝐶(𝑆𝑁−1) is denoted by A𝑁 .

Blaschke’s Sum

Given x, y ∈ V𝑁 , the record x=R𝑁y means that x and 𝑦 are equal up to
translation or, in other words, are translates of one another. So, =R𝑁 is the
associate equivalence of the preorder >R𝑁 on V𝑁 of the possibility of inserting one
figure into the other by translation.

The sum of the surface area measures of x and y generates the unique class
x#y of translates which is referred to as the Blaschke sum of x and y.

There is no need in discriminating between a convex figure, the coset of its
translates in V𝑁/R𝑁 , and the corresponding measure in A𝑁 .

Comparison Between the Structures

OBJECTS MINKOWSKI BLASCHKE

cone of sets V𝑁/R𝑁 A𝑁

dual cone V *
𝑁 A *

𝑁

positive cone A *
𝑁 A𝑁

linear functional 𝑉1(z𝑁 , · ), breadth 𝑉1( · , z𝑁), area

concave functional 𝑉 1/𝑁( · ) 𝑉 (𝑁−1)/𝑁( · )
convex program isoperimetric problem Urysohn’s problem

operator constraint inclusion-like curvature-like

Lagrange’s multiplier surface function

gradient 𝑉1(x̄, · ) 𝑉1( · , x̄)

The Natural Duality

Let 𝐶(𝑆𝑁−1)/R𝑁 stand for the factor space of 𝐶(𝑆𝑁−1) by the subspace of all
restrictions of linear functionals on R𝑁 to 𝑆𝑁−1. Let [A𝑁 ] be the space A𝑁 − A𝑁

of translation-invariant measures, in fact, the linear span of the set of Alexandrov
measures.
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𝐶(𝑆𝑁−1)/R𝑁 and [A𝑁 ] are made dual by the canonical bilinear form

⟨𝑓, 𝜇⟩ = 1

𝑁

∫︁
𝑆𝑁−1

𝑓𝑑𝜇

(𝑓 ∈ 𝐶(𝑆𝑁−1)/R𝑁 , 𝜇 ∈ [A𝑁 ]).

For x ∈ V𝑁/R𝑁 and y ∈ A𝑁 , the quantity ⟨x, y⟩ coincides with the mixed
volume 𝑉1(y, x).

Solution of Minkowski’s Problem

Alexandrov observed that the gradient of 𝑉 (·) at x is proportional to 𝜇(x) and
so minimizing ⟨·, 𝜇⟩ over {𝑉 = 1} will yield the equality 𝜇 = 𝜇(x) by the Lagrange
multiplier rule. But this idea fails since the interior of V𝑁 is empty. The fact that
DC-functions are dense in 𝐶(𝑆𝑁−1) is not helpful at all.

Alexandrov extended the volume to the positive cone of 𝐶(𝑆𝑁−1) by the formula
𝑉 (𝑓) := ⟨𝑓, 𝜇(co(𝑓))⟩ with co(𝑓) the envelope of support functions below 𝑓 . The
ingenious trick settled all!

This was done by Alexandrov in 1938 but still is one of the summits of convex-
ity.

Is Dido’s Problem Solved?

From a utilitarian standpoint, the answer is definitely in the affirmative. There
is no evidence that Dido experienced any difficulties, showed indecisiveness, and
procrastinated the choice of the tract of land. Practically speaking, the situation in
which Dido made her decision was not as primitive as it seems at the first glance.
The appropriate generality is unavailable in the mathematical model known as the
classical isoperimetric problem.

Dido’s problem inspiring our ancestors remains the same intellectual challenge
as Kant’s starry heavens above and moral law within.

Pareto Optimality

Consider a bunch of economic agents each of which intends to maximize
his own income. The Pareto efficiency principle asserts that as an effective
agreement of the conflicting goals it is reasonable to take any state in which
nobody can increase his income in any way other than diminishing the income of
at least one of the other fellow members. Formally speaking, this implies the
search of the maximal elements of the set comprising the tuples of incomes of the
agents at every state; i.e., some vectors of a finite-dimensional arithmetic space
endowed with the coordinatewise order. Clearly, the concept of Pareto optimality
was already abstracted to arbitrary ordered vector spaces.
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Vector Isoperimetric Problem

Given are some convex bodies y1, . . . , y𝑀 . Find a convex body x encompassing
a given volume and minimizing each of the mixed volumes 𝑉1(x, y1), . . . , 𝑉1(x, y𝑀).
In symbols,

x ∈ A𝑁 ; ̂︀𝑝(x) > ̂︀𝑝(x̄); (⟨y1, x⟩, . . . , ⟨y𝑀 , x⟩) → inf.

Clearly, this is a Slater regular convex program in the Blaschke structure.
Each Pareto-optimal solution x̄ of the vector isoperimetric problem has the form

x̄ = 𝛼1y1 + · · ·+ 𝛼𝑚y𝑚,

where 𝛼1, . . . , 𝛼𝑚 are positive reals.

The Leidenfrost Problem

Given the volume of a three-dimensional convex figure, minimize its surface
area and vertical breadth.

By symmetry everything reduces to an analogous plane two-objective problem,
whose every Pareto-optimal solution is by 2 a stadium, a weighted Minkowski
sum of a disk and a horizontal straight line segment.

A plane spheroid, a Pareto-optimal solution of the Leidenfrost problem, is the
result of rotation of a stadium around the vertical axis through the center of the
stadium.

Internal Urysohn Problem with Flattening

Given are some convex body x0 ∈ V𝑁 and some flattening direction 𝑧 ∈ 𝑆𝑁−1.
Considering x ⊂ x0 of fixed integral breadth, maximize the volume of x and min-
imize the breadth of x in the flattening direction: x ∈ V𝑁 ; x ⊂ x0; ⟨x, z𝑁⟩ >
⟨x̄, z𝑁⟩; (−𝑝(x), 𝑏𝑧(x)) → inf.

For a feasible convex body x̄ to be Pareto-optimal in the internal Urysohn
problem with the flattening direction 𝑧 it is necessary and sufficient that there be
positive reals 𝛼, 𝛽 and a convex figure x satisfying

𝜇(x̄) = 𝜇(x) + 𝛼𝜇(z𝑁) + 𝛽(𝜀𝑧 + 𝜀−𝑧);

x̄(𝑧) = x0(𝑧) (𝑧 ∈ spt(𝜇(x)).

Here spt(𝜇) is the support of a measure 𝜇.

Rotational Symmetry

Assume that a plane convex figure x0 ∈ V2 has the symmetry axis 𝐴𝑧 with
generator 𝑧. Assume further that x00 is the result of rotating x0 around the
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symmetry axis 𝐴𝑧 in R3.

x ∈ V3;

x is a convex body of rotation around 𝐴𝑧;

x ⊃ x00; ⟨z𝑁 , x⟩ > ⟨z𝑁 , x̄⟩;
(−𝑝(x), 𝑏𝑧(x)) → inf.

Each Pareto-optimal solution is the result of rotating around the symmetry axis
a Pareto-optimal solution of the plane internal Urysohn problem with flattening in
the direction of the axis.

Soap Bubbles

Little is known about the analogous problems in arbitrary dimensions. An
especial place is occupied by the result of Porogelov who demonstrated that the
“soap bubble” in a tetrahedron has the form of the result of the rolling of a ball
over a solution of the internal Urysohn problem, i.e. the weighted Blaschke sum
of a tetrahedron and a ball.

The External Urysohn Problem with Flattening

Given are some convex body x0 ∈ V𝑁 and flattening direction 𝑧 ∈ 𝑆𝑁−1. Con-
sidering x ⊃ x0 of fixed integral breadth, maximize volume and minimizing breadth
in the flattening direction: x ∈ V𝑁 ; x ⊃ x0; ⟨x, z𝑁⟩ > ⟨x̄, z𝑁⟩; (−𝑝(x), 𝑏𝑧(x)) → inf.

For a feasible convex body x̄ to be a Pareto-optimal solution of the external
Urysohn problem with flattening it is necessary and sufficient that there be positive
reals 𝛼, 𝛽, and a convex figure x satisfying

𝜇(x̄) + 𝜇(x) ≫ R𝑁𝛼𝜇(z𝑁) + 𝛽(𝜀𝑧 + 𝜀−𝑧);

𝑉 (x̄) + 𝑉1(x, x̄) = 𝛼𝑉1(z𝑁 , x̄) + 2𝑁𝛽𝑏𝑧(x̄);

x̄(𝑧) = x0(𝑧) (𝑧 ∈ spt(𝜇(x)).

Optimal Convex Hulls

Given y1, . . . , y𝑚 in R𝑁 , place x𝑘 within y𝑘, for 𝑘 := 1, . . . ,𝑚, maximizing
the volume of each of the x1, . . . , x𝑚 and minimize the integral breadth of their
convex hull:

x𝑘 ⊂ y𝑘; (−𝑝(x1), . . . ,−𝑝(x𝑚), ⟨co{x1, . . . , x𝑚}, z𝑁⟩) → inf .

For some feasible x̄1, . . . , x̄𝑚 to have a Pareto-optimal convex hull it is neces-
sary and sufficient that there be 𝛼1, . . . , 𝛼𝑚 ∈ R+ not vanishing simultaneously
and positive Borel measures 𝜇1, . . . , 𝜇𝑚 and 𝜈1, . . . , 𝜈𝑚 on 𝑆𝑁−1 such that

𝜈1 + · · ·+ 𝜈𝑚 = 𝜇(z𝑁);

x̄𝑘(𝑧) = y𝑘(𝑧) (𝑧 ∈ spt(𝜇𝑘));

𝛼𝑘𝜇(x̄𝑘) = 𝜇𝑘 + 𝜈𝑘 (𝑘 := 1, . . . ,𝑚).
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See [3] and [4] for more detail.
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