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Abstract. In data processing, it is important to gauge how input uncertainty
affects the results of data processing. Several techniques have been proposed
for this gauging, from interval to affine to Taylor techniques. Some of these
techniques result in more accurate estimates but require longer computation
time, others’ results are less accurate but can be obtained faster. Sometimes,
we do not have enough time to use more accurate (but more time-consuming)
techniques, but we have more time than needed for less accurate ones. In
such cases, it is desirable to come up with intermediate techniques that would
utilize the available additional time to get somewhat more accurate estimates.
In this paper, we formulate the problem of selecting the best intermediate
techniques, and provide a solution to this optimization problem.
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1. Formulation of the Problem

Interval, affine, and Taylor techniques: reminder. In many practical problems,
we need to estimate the value of a quantity y based on the values of the quantities
x1,...,%, on which y depends in a known way, as y = f(xy,...,x,) for a known
algorithm f(z1,...,z,).

The problem is that we do not know the exact values of the quantities x;, all we
know are the results z; of measuring x;, and these results are, in general different

from the actual values of the corresponding quantities: there is usually a non-zero

def ~ . .
measurement error Az; = 7; — x;; see, e.g., [7]. Often, the only information

that we have about each of these measurement error is the upper bound A; on
its absolute value: |Ax;| < A;. In this case, the only information that we have
about the actual (unknown) value z; is that this value belongs to the interval
[z; — A, T; + A;]. In such situations, it is desirable not only to compute the value
y = f(x1,...,7,), but also to find the range of possible values of y:

{flxr, ) c o € [T — A, T+ A}
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One of the natural ideas for computing this range is to take into account that
computing y consists of several computational steps. So, on each of these steps,
we do not only compute the corresponding intermediate result z, but we also keep
some information about the dependence of this result on x;, information that will
eventually help us to find the desired range. There exist several implementations
of this idea.

e In interval computations (see, e.g., [4-6]), for each intermediate result z, we
keep an interval of possible values of z.

e In affine arithmetic (see, e.g., [2,3]), for each intermediate result z, we
represent Az =z — z as the expression

Az:zn:ai'Axi+§z,

i=1

in which we know the coefficients a; and the upper bound A, on the absolute
value of the remaining term dz: |0z] < A,.

e In the more general Taylor arithmetic (see, e.g., [1]), instead of a generic
linear expression, we keep a generic polynomial expression of a given order
k:

Az:Zail-Axil—k...—l—z...Zail_“ik-Axil-...-Axik+6z,

i1=1 =1 ip=1

in which we know the coefficients a;, ,;, and the upper bound A, on the
absolute value of the remaining term dz.

Then, for each elementary computational step — addition, subtraction, multiplica-
tion, etc. — we use expressions for this step’s inputs to come up with a similar
expression for the output of this step. For example, if we know that

n

Az=> a;-Ax;+ 06z and At = b;- Aw; + 0,

i=1 i=1
with |0z] < A, and |0t] < Ay, then for s = 2z + ¢, we get

n

As = Z(ai +b;) - Ax; + 0s,

=1
where [ds| < A, + A,.

Need for intermediate techniques. The more terms we keep in the dependence
of Az on Ax;, the more accurately we represent this dependence — after all, any
continuous function on a bounded domain can be approximated by polynomials as
accurately as possible, but the more accuracy we want, the more terms we need.
On the other hand, the more terms we keep and process for each intermediate
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result, the more memory we need and the more computation time we need — and
both memory and computation time are often limited.

As of now, the usual choice is either go with interval computations, or use affine
arithmetic, or use quadratic Taylor series, or use cubic Taylor series, etc. But what
if we do not have enough time to use affine techniques but we still have extra time
left when using intervals? In this case, it is desirable to use this extra time to come
up with computations which are less time consuming that affine arithmetic, but
more accurate than interval computations. Similarly, if we cannot afford quadratic
Taylor series but we still have extra time left when using affine arithmetic, it
is desirable to come up with computations which are less time consuming that
quadratic Taylor technique, but more accurate than affine arithmetic.

Which intermediate techniques should we choose? There are many possible
intermediate techniques. We can choose some monomials and only use their linear
combinations. Alternatively, we can select some other basis in the linear space of
all polynomials of given order, and use linear combinations of some elements of
this basis.

In this paper, we show that the optimal choice is selecting monomials.

2. Analysis of the Problem

What we want. If we can only afford to have a limited number L of coefficients at
each computation stage, then we need to represent the difference Az corresponding
to each intermediate result as

L
Az = Zag Jo(Axy, ..., Axy,) + 02,
(=1
where f,(Axy,...,Ax,) are pre-selected analytical functions, and we know the

coefficients a, and a bound A, of the absolute value of the remainder ¢z.

In this approach, we approximate each dependence of Az on Ax; by a linear
combination of the functions f,(Axy,...,Ax,), i.e.,, by an element of the corre-
sponding L-dimensional space

L
A= {Zae - fo(Axq, ... ,Axn)}
=1

So, selecting an intermediate method means selecting an L-dimensional linear
(sub)space in the linear space of all analytical functions.

What we mean by optimal. We want to select a subspace which is, in some
reasonable sense, optimal. In some cases, optimal means attaining the largest or
the smallest value of some objective function. However, optimality criteria can be
more general. For example, if we select average approximation error as the objec-
tive function, we may end up with several different spaces with the same smallest
possible value of this objective function. In this case, it is reasonable to select,
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among them, the space that requires the smallest possible average computation
time. This is equivalent to selecting an optimality criterion which is more complex
than numerical: according to this criterion, a space A is better than a family A’ if:

e either A has a smaller average approximation error,

e or they have the same average approximation error, but A’ has a smaller
average computation time.

We can have even more complex criteria. In general, what all these criteria do
is for some pairs of alternatives A and A’ that A is better — we will denote it by
A < A" - or that they are of equal quality with respect to this criterion; this we
denote by A ~ A’. It is also possible that for some pairs, the criterion does not tell
us which alternative is worse. Of course, these conclusions should be consistent:
e.g., if A is better than A’, and A’ is better than A”, then A should be better than
A"

What is important is that there should be exactly one alternative which is,
according to this criterion, better than or of equal quality than all others. Indeed,
as we have mentioned, if there are several optimal alternatives, this would mean
that we can use the corresponding non-uniqueness to optimize something else —
and thus, that the original optimality criterion is not final.

Scale-invariance. We process the values of physical quantities, but the numerical
values of these quantities depend on the choice of a measuring unit. If we replace
meters with centimeters, the lengths remain the same, but the numerical values
of all the lengths become multiplied by ¢ = 100. In general, if we select a different
measuring unit for the quantity z;, then its numerical value (and thus, the numer-
ical value of the difference Ax; = z; — x;) gets multiplied by the corresponding
factor ¢; > 0: x; — ¢; - ;.

[t is reasonable to assume that the relative quality of different approximation
families do not depend on the choice of units. Indeed, it would be very strange if
one family is better for meters and kilograms, and another is better for centimeters
and grams.

Now, we are ready to formulate our main result.

3. Definition and the Main Result

Definition 1. Let A be a set; its elements will be called alternatives.

e By an optimality criterion on the set S, we mean a pair of relations (<, ~)
that satisfy the [ollowing properties:
- if A< A and A’ < A", then A < A”;
- if A< A and A’ ~ A", then A < A”;
- if A~ A" and A" < A", then A < A”;
—ifA~ A" and A ~ A", then A~ A";
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- always A ~ A; and
— if A< A" then A A" and A’ £ A.

e We say that an alternative A is optimal for every A’ € A, we have A < A’
or A~ A

e We say that an optimality criterion is final if there is exactly one optimal
alternative.

Definition 2. Let A be the set of all L-dimensional linear subspaces of the
linear space of all analytical functions. We say that the optimality criterion

is scale-invariant if for all tuples ¢ = (c1,...,c,) of positive numbers, we have
A<A e S(A) <S(A)and A~ A < S.(A) ~ S.(A"), where

Se(A) ={f(c1 - Axq, ..., cn - Axy) : f(Axy, ..., Az,) € A}

Proposition. For every scale-invariant [inal optimality criterion, the optimal
linear space is the set of all linear combinations of given L monomials.

Comment. In other words, the optimal method between interval and affine means

selecting L < n variables 4,...,7z, and considering expressions
L
Az = E ag - x;, + 0z.
=1

The optimal method between affine and quadratic Taylor methods means selecting
L — n pairs (ig, j¢), and considering expressions

n L—n
Az:g aimi—l—g ag - x;, - xj, + 0z,
i=1 =1

etc.

Proof of the Proposition. Let us first prove that the optimal space A,y is
itself scale-invariant, i.e., that T,.(A.p) = Aope for all ¢. Indeed, by definition of
optimality, for every A’, we have A, < A’ or Ay ~ A’. This is true for all A', i
particular, for A" = T.-1(A), where (c1,...,¢,)7" = (c;',...,c;h). By using scale-
invariance, from A, < T.-1(A), we conclude that T,.(Aop) < T.(T.-1(A)) = A,
and from Agp ~ T,—1(A), we conclude that T,(Aopt) ~ Te(T-1(A)) = A. Thus, for
each alternative A, we have either T.(Ayp) < A or Tc(Aopt) ~ A. By definition of
an optimal alternative, this means that the alternative 7.(A,p) is optimal. But our
optimality criterion is final, which means that there is only one optimal alternative,
and therefore, T,.(Aopt) = Aopt-

Each function from the basis of the optimal family is an analytical function,
i.e., a sum - finite or infinite — of monomials, i.e., of the expressions of the type
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(Azy)kr .. - (Az,)*. Let my be the smallest possible value of k; in all L basic
functions. Then, the function containing a non-zero term with 27" has the form

fé(Al'l, AQ, C. 7A{L’n) =
(Az)™ - Pl(Axs, ..., Azy) 4+ (Az)™ - Py(Azs, ... Azy) + ...,

where Py are polynomials and P, is not identically 0. Due to scale-invariance, for
each ¢;, the function
ff(cl : AII? A27 BRI Axn) =

e (Amn)™  Pr(Am, o M) + ¢ (D)™ Py(Aay, - Ay
also belongs to the space Ay, and thus, the function
™ foley - Axqy, Ao, Ary) =
(M) P&y, . Ay) ey (D)™ Py Dy, D)

A finite-dimensional linear space is closed, i.e., contains all its limits. In particular,
in the limit ¢; — 0, we conclude that the space L contains the function

(Al'l)ml . P1<A.I'2, Ce ,Al’n)

Similarly, by considering the smallest possible power of Az, in this expression
and using scale-invariance, we conclude that the optimal linear space contains a
function (Axy)™ - (Axg)™2-Qq(Axs, ..., Ax,), etc., and in the end, that the optimal
linear space contains a monomial (Axy)™ - (Axg)™2 - ... - (Ax,)™".

By subtracting terms proportional to this monomial from all the basic functions,
we thus get a new basis, in which we can also select a monomial, etc. At the end,
we indeed get a representation of the optimal linear space as the set of all linear
combinations of L. monomials.

The proposition is proven.

How we can implement this idea. In the case of techniques intermediate between
interval and affine, we can select the variables z; for which the initial uncertainty
is the largest.

Alternatively, at each step like computing s = z + ¢, we can first combine all
2L terms from both expressions for z and for ¢, and then keep L of them with the
largest uncertainty — i.e., the largest values of the corresponding term |a;| - A;.
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Texacckuit ynusepcutet B Anb-Ilaco, dab-ITaco, CHIA

AnHotaums. [Ipu 06paboTKe NaHHBIX Ba)KHO OLEHUTb, KaK HEOMpeJeJeHHOCTh BBOJA
BJIMSIET HA pe3yJbTaTbl 00pabOTKH NAHHBIX. /s 3TOH KaJuOpPOBKHU ObLIO MPEeJOKeHO
HeCKOJIbKO METOI0B, OT UHTepPBaJbHLIX 10 a(UHHEIX U MeTonoB Tefinopa. Hekotopsie
M3 3THUX METOJOB JNAI0T 00Jiee TOYHble OLEHKH, HO TpeGyroT OGoJiblile BpeMeHH JJIsi
BBIYMCJIEHHH, APYTHe pe3yJbTaThl MeHee TOYHbl, HO MOTYT OBITb MOJyUeHBl OBICTpEE.
MHorpa y Hac He XBaTaeT BpeMeHH, UTOOBl HCIOJMb30BaTh 0oJjiee TOUHBIE (HO GoJjee
TPYLOEMKHE) METOABI, HO Y HAC €CTb GOJblle BPeMeHH, YeM HYXKHO, [/ MeHee TOUHBIX.
B rakux caydasx xesaTesbHO paspaboTaTb NPOMEKYTOUHblE METOAB!, KOTOpPbIe M03BO-
JIUJK OBl UCIIONB30BaTh HMelollleecs JOMONHUTEbHOE BpeMsl AJIsl ONyYeHHs] HECKOIbKO
6oJsiee TOYHBIX OLIEHOK. B naHHOU cTaTbhe Mbl popMyIHMpyeM 3anady Bei6Opa HAMIYULINX
MPOMEXKYTOUHBIX METOJOB M NaéM pellleHHe 3TOH 3a4ayd ONTHMH3aLHKH.

KuroueBbie cioBa: 06paboTKa AaHHBIX, HHTEPBaJbHBIH METOM, ONTHMaJbHBIH METON,

Mmeton Tetisopa.
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