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Abstract. Complex numbers are ubiquitous in physics, they lead to a natu-
ral description of different physical processes and to efficient algorithms for
solving the corresponding problems. But why this seemingly counterintuitive
mathematical construction is so natural here? In this paper, we provide a
possible explanation of this phenomenon: namely, we show that complex num-
bers appear if take into account that some physical system are described by
derivatives of fractional order and that a physically meaningful analysis of such
derivatives naturally leads to complex numbers.
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1. Introduction

Formulation of the problem. In many situations ranging from electromagnetic
waves and electric circuits to quantum process, the existing physical description
of a process uses complex numbers; see, e. g., [1,3]. This ubiquity of applications
is one of the main reasons why complex numbers — at first glance, a strange
and somewhat counterintuitive mathematical construction — are actively studied
at schools and at the universities.

But a natural question is: why are complex numbers ubiquitous in physics?

What we do in this paper. In this paper, we provide a possible explanation for
this ubiquity: namely, we show that complex numbers naturally appear when we
consider physical processes that require derivatives of fractional order.

2. Our Explanation

Need for fractional derivatives. Usual physical equations contain first-order,
second-order (as in Newton’s law), sometimes higher-order derivatives. But often,
there are processes which are naturally described by derivatives of fractional order:
e. g., of order 1/2; see, e. g., [1-3,5-7] and references therein.
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What are the natural properties of the corresponding fractional differentiation
operations D® of fractional order a?

Linearity: first natural property of fractional differentiation. Similar to the
usual differentiation, the fractional derivative of a linear combination should be
equal to the similar linear combination of fractional derivatives:

DY eci-fi+...4+cn-fu)=c1-D(f1)+...+cn- D fn), (1)

for all possible numbers ¢4, ..., ¢, and functions fi,..., f,.

Second natural property of fractional differentiation. For each function f(¢),
we can define its first derivative — which we will denote by Df, its second deriva-
tive — which we will denote by D?f, etc. For such derivatives, if we apply a-th
order derivative to the b-th order one, this is equivalent to applying differentiation
a + b times:

DH(Df) = D, (2)

[t is reasonable to require that this property remains true if we consider fractional
values a and b. For example, we should have

DY*(DY2f) = Df. (2a)

Shift: a brief reminder. Another physically reasonable property of fractional
derivative is related to the fact that ¢ often means time, and for time, there is no
fixed starting point. If instead of the original starting point for measuring time,
we select another one which is ¢, moments earlier, then to all original numerical
values of time, we add the constant ¢,: instead of the original value ¢, we get a
new value t/ =t + t,.

In the new units, the description f(¢) of the same physical process changes:
each moment of time ¢ in the new time scale corresponds to moment ¢ — ¢y in the
original time scale. Thus, in the new scale, this same physical process is described
by a new function f(t —t). The corresponding transformation of the function f(t)
into a new function f(t —ty) is known as shift:

(Sto f)(t) = f(t = to). (3)

Shift-invariance: third natural property of fractional differentiation. Since
the choice of a starting point for measuring time is just a matter of convention —
it does not change any physics, it makes sense to require that fractional derivatives
do not change if we apply shift. In other words, if we apply a partial derivative to
a shifted function, the result should be the same as when we first differentiate in
the original time scale and then shift. In other words, we must have the following
equality:

D*(Siyf) = Su(D" ). (4)
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One can easily check that the usual differentiation — as well as the operations of
taking second, third, etc. derivatives — are, in this sense, shift-invariant.

What can we derive from these properties. Let us consider a function fi () o

exp(k - t). The importance of this function is that shifting it is equivalent to
multiplying it by a constant:

(Sto o) (8) = fr(t —to) = exp(k - (t —t0)) =

exp(—k - to) - exp(k - t) = exp(—k - to) - [ + k(). (5)

Due to shift-invariance, if we denote g, x(t) o (D fr)(t), then the fractional deriva-

tive D*(Sy, fx) of the shifted function S, fi is equal to the shifted version Sy g, of
the function g, x(t), i. e., to

(Da(Stofk))(t) = (Stoga,k)(t) = ga,k(t - tO)' (6)

On the other hand, since, according to the formula (5), the shifted function Sy, fy is

simply equal to the original function fj multiplied by a constant Cy 4, o exp(—k-to),
by linearity, the fractional derivative D®(S;,fx) of the shifted function S, f; is
equal to the fractional derivative g, = D®f; ol fi multiplied by the same constant
Chrt, = exp(—k - to):

(D*(Sto fi))(t) = exp(=k - to) - ga(t). (7)

The formula (6) and (7) describe the same quantity, so their right-hand sides must
be equal for all ¢ and for all t:

Gas(t —to) = exp(—k - to) - gai(?). (8)
In particular, for every real number s, by taking t = 0 and s = —t,, we get
gak(s) = exp(k - s) - c(a, k), (9)
for some constant c¢(a, k) o Gax(0). In other words, we conclude that for the
function fi(t) = exp(k - t), we have
(D*fi)(t) = cla, k) - fi(t)- (10)

This naturally leads to complex numbers. For a = 1/2, the formula (10) leads
to

DY2f = ¢(1/2,k) - f. (11)

For a function fy(t) = exp(k - t), its derivative Df, is equal to k - exp(k - t),
i. e, to k- fr. Due to the above-mentioned second natural property of fractional
differentiation, we have

D'2(DV2f) = (Df) = k- fi. (12)
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Due to (11), the left-hand side of the formula (12) is equal to

DYDY f) = DY*(c(1/2,k) - fi): (13)
Due to linearity, we have

DYA(DY2f) = DV2(c(1/2,k) - fi) =

c(1/2,k) - (D2 fi) = e(1/2,k) - (c(1/2,k) - fr) = (e(1/2.0)* fre  (14)

By comparing expressions (12) and (14), we conclude that
(c(1/2,k))* = k. (15)

So, for any decreasing exponential function, with & < 0, the only way to define
fractional derivative satisfying the above natural properties is to use complex (to
be more precise, imaginary) values ¢(1/2, k), and thus, complex-valued result of
fractional differentiation!

Thus indeed, here complex numbers naturally appear. This provides one of the
possible explanations for the ubiquity of complex numbers.

Comment. Once we allow complex numbers, everything works. One can show that
we then naturally have c(a, k) = k%, i. e.,

D%exp(k-t)) = k* - exp(k - ). (16)

Since usual functions can be represented as linear combinations of exponential
functions — this is known as Laplace transform — we can thus describe fractional
derivative of all regular functions.
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Texackuii ynuBepcuter B dib [lacco, CIIA

AnHoTtamma. KommnjekcHble 4uc/a LIMPOKO HCMOMNB3YIOTCS B (PU3HMKE, OHH MPUBOAAT
K €CTeCTBEHHOMY ONHCAHUI0 Pa3JHYHbIX (PU3NYECKUX IPOLECCOB U K 3(P(HeKTHBHBIM
aJropuTMaM pelleHHs] COOTBETCTBYIOIMX 3anau. Ho mouemy 3Tta xasasnoch 6bl napanok-
caJbHasi MaTeMaTHdecKasi KOHCTPYKIHS 3[1eCb HACTOJbKO ecTecTBeHHA? B 3Toil craTbe
MBI 1aeM BO3MOXKHOE 0ObSICHEHHE 3TOTO SIBJIEHHS, 2 UMEHHO: MBI [IOKa3bIBAEM, UTO KOM-
TNJIEKCHBIE YHC/Ia MOSIBJSIOTCS, €CH PUHATh BO BHUMaHMe, YTO HEKOTOPBIE (hU3HUecKHe
CUCTEMBI ONUCHIBAIOTCS NIPOM3BOAHBIMU JPOOHOr0 MOpsiiKa U UTO PU3UYECKH 3HAYMMBbIH
aHa/ M3 TaKUX POU3BOJAHBIX €CTECTBEHHBIM 00pa30M IPUBOIUT K KOMIIJIEKCHBIM UHCJ/IaM

KaioueBbie ciioBa: KOMIIJIEKCHbBIE YHCJ/A B (1)1/1314Ke, I[pO6HO€ HCUYHCJ/IEHHWe, HHBAapHUaHT-
HOCTb OTHOCHTEJIbBHO CIOBHIa.
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