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Abstract. Physicists working on quantum field theory actively used “macro”
analyticity — e.g., that an integral of an analytical function over a large closed
loop is 0 — but they agree that “micro” analyticity — the possibility to expand
into Taylor series — is not physically meaningful on the micro level. Many
physicists prefer physical theories with physically meaningful mathematical
foundations. So, a natural question is: can we preserve physically meaningful
“macro” analyticity without requiring physically meaningless “micro” analyt-
icity? In the 1970s, an attempt to do it was made by using constructive
mathematics, in which only objects generated by algorithms are allowed. This
did not work out, but, as we show in this paper, the desired separation be-
tween “macro” and “micro” analyticity can be achieved if we limit ourselves
to feasible algorithms.
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1. “Macro” vs. “Micro” Analyticity: Formulation of the
Problem

Smoothness in physics. On macro-level, we observe many non-smooth and even
discontinuous phenomena:

� earthquakes,
� phase transitions, etc.

However, on the micro-level, all equations and all phenomena are smooth — and
even analytical; see, e.g., [4,10]. Some of these phenomena are very fast — so we
perceive them as discontinuous.

Analyticity. For complex numbers, smoothness implies analyticity.
Analyticity has been successfully used in quantum field theory. For example,

to compute the values of some integral expressions, it is convenient to use the fact



96 O. Kosheleva, V. Kreinovich. Can We Preserve Physically Meaningful...

that for an analytical function, a contour integral over a closed loop is 0:∫︁
𝛾

𝑓(𝑧) 𝑑𝑧 = 0,

or it is equal to an explicit expression in terms of the poles.

How this “macro” analyticity can help physics. By using a loop [−𝑁,𝑁 ] ∪ 𝛾′,
we can replace a difficult-to-compute integral over real numbers

∫︀ 𝑁

−𝑁
𝑓(𝑥) 𝑑𝑥 with

an often-easier-to-compute integral over the complex values
∫︀
𝛾′ 𝑓(𝑧) 𝑑𝑧. This idea

— mostly pioneered by Nikolai Bogolyubov (see, e.g., [3]) — led to many successful
applications.

This “macro” analyticity has been confirmed by many experiments and makes
perfect physical sense.

But what about “micro” analyticity? The problem is that in traditional mathe-
matics, such “macro” analyticity is equivalent to “micro” one, that the correspond-
ing dependencies can be expanded in Taylor series:

𝑓(𝑧) = 𝑎0 + 𝑎1 · (𝑧 − 𝑧0) + 𝑎2 · (𝑧 − 𝑧0)2 + . . .+ 𝑎𝑛 · (𝑧 − 𝑧0)𝑛 + . . .

In the opinion of physicists, however, this “micro” analyticity does not make di-
rect physical sense, since on the micro level, quantum uncertainty makes exact
measurements impossible.

Can we preserve physically meaningful “macro” analyticity without requiring
physically meaningless “micro” analyticity?

2. Khalfin’s Idea: First Attempt

Maybe constructive mathematics can help? The equivalence between “macro”
and “micro” analyticity holds in traditional mathematics, where, crudely speaking,
we only care about the existence of different objects — but not about algorithms
for computing these objects.

The algorithmic problems are important. So, to deal with these problems,
researchers have come up with the idea of constructive mathematics, where we
say that an object exists only if we have an algorithm for constructing this object;
see, e.g., [1,2,11].

In constructive mathematics, some equivalence results of traditional mathemat-
ics hold — in the sense that equivalence is algorithmic — while other equivalence
results do not hold. So, in early 1970s, Leonid Khalfin, a specialist in mathematical
physics from St. Petersburg, Russia, suggested that maybe the use of construc-
tive mathematics can help us preserve physically meaningful “macro” analyticity
without requiring physically meaningless “micro” analyticity?

This did not help. By the early 1970s, specialist in constructive mathematics
have thoroughly studied complex analysis; see, e.g., [1, 6, 8]. Actually, the 1972
talk of Vladimir Overkov (one of the constructive mathematics pioneers), the talk
whose results later appeared in [8] — this talk inspired Khalfin’s suggestion.
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Unfortunately, these constructive mathematics results showed that in construc-
tive mathematics, “macro” analyticity still implies the “micro” one; this was pointed
out almost right away by Vladimir Lifschitz — another pioneer of constructive
complex analysis, the authors of a paper [6]. He pointed out that each coefficient
𝑎𝑛 of the Taylor series can be determined by the following formula:

𝑎𝑛 =
1

2𝜋 · i
·
∫︁
𝛾

𝑓(𝑧)

(𝑧 − 𝑧0)𝑛+1
𝑑𝑧, (1)

and in constructive mathematics, an integral of a computably continuous function
is computable [1,2,11].

3. Problem Revisited

Main idea. The above derivation of “micro” analyticity from the “macro” one is
based on the usual constructive mathematics. In this approach, existence of an
object means, in effect, the existence of an algorithm producing more and more
accurate approximations to this object — irrespective to how long this algorithm
may take.

A more realistic idea is to only allow feasible (= polynomial-time) algorithms;
see, e.g., [5,9]. It turns out that in this case, Khalfin’s dream can be materialized.
Namely:

� while there exists an algorithm computing, for each computable macro ana-
lytical function, all the terms in its Taylor series expansion,

� it turns out that the computation time of this algorithm seems to grow
exponentially with the number 𝑛 of the term — so such computations are
probably not feasible.

Let us provide arguments in favor of this conclusion.

Explanation. We have a computable function 𝑓(𝑧). This means that we can, given
𝑧, compute 𝑓(𝑧).

For simplicity, we can also assume that we know the upper bound 𝐷 on |𝑓 ′(𝑧)|:
|𝑓 ′(𝑧)| 6 𝐷.

Computation of the 𝑛-th Taylor coefficient 𝑎𝑛 is based on the formula (1). Here,
the simplest possible loop 𝛾 around the point 𝑧0 is a circle of some small radius
𝑟 < 1. For this loop, |𝑧 − 𝑧0| = 𝑟.

We want to compute 𝑎𝑛 with a given accuracy 𝜀 > 0. This means that we need
to compute the corresponding integral with accuracy 𝜀′ = 2𝜋 · 𝜀.

By definition, an integral is a limit of integral sums. So, in general, a natural
way to compute an integral

∫︀
𝑔(𝑧) 𝑑𝑧 is to consider the corresponding integral sum∑︁

𝑔(𝑧𝑖) ·∆𝑧, with |𝑧𝑖+1 − 𝑧𝑖| = ℎ for some small ℎ.

In this approximation, we approximate 𝑔(𝑧) with 𝑔(𝑧𝑖) on each arc of length ℎ for
which |𝑧 − 𝑧𝑖| 6 ℎ/2.
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The inaccuracy of this approximation is

|𝑔(𝑧)− 𝑔(𝑧𝑖)| 6
(︁

max
𝑧
|𝑔′(𝑧)| · |𝑧 − 𝑧𝑖|

)︁
6 max

𝑧
|𝑔′(𝑧)| · (ℎ/2).

Here, 𝑔(𝑧) =
𝑓(𝑧)

(𝑧 − 𝑧0)𝑛+1
≈ 𝑓(𝑧)

𝑟𝑛+1
. Thus, max

𝑧
|𝑔′(𝑧)| 6 max |𝑓 ′(𝑧)|

𝑟𝑛+1
=

𝐷

𝑟𝑛+1
.

So, the approximation accuracy is
𝐷

𝑟𝑛+1
· (ℎ/2). To get accuracy 𝜀′, we need to

take ℎ for which
𝐷

𝑟𝑛+1
· (ℎ/2) = 𝜀′, i.e., ℎ = 2

𝜀′

𝐷
· 𝑟𝑛+1.

The whole loop 𝛾 of length 2𝜋 · 𝑟 should be covered by intervals of length ℎ.
These intervals correspond to values 𝑧𝑖 at which we compute 𝑓(𝑧). Thus, we need

to compute 𝑓(𝑧) for 𝑁 =
2𝜋 · 𝑟
ℎ

points.

Substituting the above expression for ℎ, we conclude that we need to compute
𝑓(𝑧) at

𝑁 =
2𝜋 · 𝑟 ·𝐷
2𝜀′ · 𝑟𝑛+1

∼ 𝑟−𝑛 points.

Since 𝑟 < 1, this number indeed grows exponentially with 𝑛. This is exactly what
we wanted to show.

4. Possible Applications

This result will probably be of interest to theoreticians (like Khalfin) — who are
interested in providing physical theories with physically meaningful mathematical
foundations.

This result may also have practical applications if we take into account that
many times when we encountered a physical process whose properties are difficult
to compute, it became possible to use this process to speed up computations.
Successes of quantum computing are the latest example of this phenomenon; see,
e.g., [7].

From this viewpoint, maybe measurement of the corresponding Taylor coeffi-
cients can lead to yet another efficient quantum computing scheme?
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МОЖЕМ ЛИ МЫ СОХРАНИТЬ ФИЗИЧЕСКИ ЗНАЧИМУЮ «МАКРО»
АНАЛИТИЧНОСТЬ, НЕ ТРЕБУЯ ФИЗИЧЕСКИ БЕССМЫСЛЕННОЙ

«МИКРО» АНАЛИТИЧНОСТИ?
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Аннотация. Физики, работающие над квантовой теорией поля, активно исполь-
зовали «макро» аналитичность (например, что интеграл аналитической функции
по большому замкнутому контуру равен 0), но они согласны с тем, что «мик-
ро» аналитичность (возможность разложения в ряд Тейлора) физически не имеет
смысла на микроуровне. Многие физики предпочитают физические теории с фи-
зически значимыми математическими основами. Итак, возникает естественный
вопрос: можем ли мы сохранить физически значимую «макро» аналитичность, не
требуя физически бессмысленной «микро» аналитичности? В 1970-х годах была
сделана попытка сделать это с помощью конструктивной математики, в которой
разрешены только объекты, сгенерированные алгоритмами. Это не сработало, но,
как мы показываем в этой статье, желаемое разделение между «макро» и «мик-
ро» аналитичностью может быть достигнуто, если мы ограничимся выполнимыми
алгоритмами.

Ключевые слова: математические основы физики, аналитическая функция, кон-

структивная математика, выполнимые алгоритмы.

Дата поступления в редакцию: 09.02.2020


