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Abstract. One of the biases potentially affecting systems engineers is the
confirmation bias, when instead of selecting the best hypothesis based on the
data, people stick to the previously-selected hypothesis until it is disproved.
In this paper, on a simple example, we show how important it is to take
care of this bias: namely, that because of this bias, we need twice as many
experiments to switch to a better hypothesis.

Keywords: confirmation bias, systems engineering, hypothesis testing.

1. Formulation of the Problem

Confirmation bias. [t is known that our intuitive reasoning shows a lot of un-
expected biases; see, e.g., [2]. One of such biases is a confirmation bias, when,
instead of selecting the best hypothesis based on the data, people stick to the
previously-selected hypothesis until it is disproved. This bias is ubiquitous in
systems engineering; see, e.g., [1,4,5,8].

How important is it to take the confirmation bias into account? Taking
care of the confirmation bias requires some extra effort; see, e.g., [3,7-9] and
references therein. A natural question is: is the resulting improvement worth this
extra effort? How better the result will we get?

In this paper, on a simple example, we show that the result is drastically better:
namely, that if we properly take this bias into account, then we will need half as
many experiments to switch to a more adequate hypothesis.

2. Analysis of the Problem

Description of the simple example. Let us consider the simplest possible case
when we have a parameter a that may be 0O and may be non-zero, and we di-
rectly observe this parameter. We will also make the usual assumption that the
observation inaccuracy is normally distributed, with 0 mean and known standard
deviation o.
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In this case, what we observe are the values xi,...,x, which are related to
the actual (unknown) value a by a relation x; = a +¢; (i = 1,...,n), where ¢;
are independent normally distributed random variables with O means and standard
deviation o.

Two approaches. In the ideal approach, we select one of the two models - the
null-hypothesis @ = 0 or the alternative hypothesis a # 0 — by using the usual
Akaike Information Criterion (AIC); see, e.g., [6].

In the confirmation-bias approach, we estimate the value a based on the ob-
servations zy,...,z,, and we select the alternative hypothesis only if the resulting
estimate is statistically significantly different from 0 - i.e., e.g., that the 95%
confidence interval for the value a does not contain 0.

What if we use AIC. In the AIC, we select a model for which the difference
AIC ¥ 2k — 21n <L) is the smallest, where k& is the number of parameters in a

model and L is the largest value of the likelihood function L corresponding to this
model.

The null-model @ = 0 has no parameters at all, so for this model, we have
k = 0. For n independent measurement results, the likelihood function is equal to
the product of the values

1 x?
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of the Gaussian probability density function corresponding to these measurement
results z;. Thus,
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and so, for this model,
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We assume that z; = a + ¢;, where the mean value of ¢; is 0 and the standard
deviation is o. Thus, the expected value of z? is equal to a® + 0. For large values

1 n
n, due to the Law of Large Numbers (see, e.g., [6]), the average . fo is
=1

approximately equal to the expected value E[z?] = a*+0?. Thus, Y 22 ~ n-(a*+0?)
i=1
and hence,
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The alternative model a # 0 has one parameter a, so here kK = 1. The corre-
sponding likelihood function is then equal to
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We select the parameter a that maximizes the value of this likelihood function.
Maximal likelihood is the usual way of estimating the parameters, which in this

1 n
case leads toa = — - Zx, For large n, this estimate is close to the actual value
n
i=1
a, so we have

~ 1 (xi—a)Q)
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For this model, z; — a = ¢;, thus,

AIClzz—zln(E):2+2n-1n<\/%-o)+i-253.

n
For large n, we have > e ~ n - o?, hence
=1

1
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o
The second model is preferable if AIC; < AIC,. By deleting common terms

in these two values AIC;, we conclude that the desired inequality reduces to
2
n-a
2 <

S e, equivalently, to
g

n>—. (3)

What if we use a confirmation-bias approach. In the confirmation-bias ap-
proach, we estimate a — and we have already mentioned that the optimal estimate

1 n
isa=—- E x;. It is known (see, e.g., [6]) that the standard deviation of this
n
i=1

estimate is equal to o, = 7. Thus, the corresponding 95% confidence interval
n

has the form [a — 20.,a + 20.]. The condition that this interval does not contain
0 is equivalent to |a| > 20, i.e., equivalently, to a® > 402. Substituting the above
2

expression for o, into this inequality, we conclude that a? > 4~U—, i.e., equivalently,
n
that
n>—-. (4)

Conclusion. By comparing the expressions (3) and (4) corresponding to the two
approaches, we can indeed see that the confirmation-bias approach requires twice
as many measurements than the approach in which we select the best model based
on the data.

Thus indeed, avoiding confirmation bias can lead to a drastic improvement in
our estimates and thus, in our decisions.
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Texacckuit yHuBepcuret B b [laco, CIIA

AnHoTtaumsa. OnHUM U3 TpenyOeKIeHUH, NMOTEHLHAJbHO BJHUSIOUIMX HAa CHCTEMHBIX
WHKEHEpPOB, SIBJSETCS CKIOHHOCTb K TOATBEPXKAEHHIO, KOTIa BMECTO TOr0, YTOObI Bbl-
6paThb JyULIyIO TUHIIOTE3y Ha OCHOBE NAHHBIX, JIIOAW MPUAEPKHUBAIOTCS paHee BEIOPaHHON
TUINOTE3bl 10 TeX 10p, NOKa OHAa He OyneT ompoBeprHyTa. B nanHo# paboTe Ha mpocToM



148 G. Acosta, E. Smith, V. Kreinovich. Confirmation Bias...

npuMepe Mbl NIOKa3blBaeM, KaK BaXKHO oOpalllaTb BHUMaHUe Ha 3TO NpenyOexaeHHe —
a UMEeHHO, UTO M3-3a 3TOro npeaybex/eHHs HaM HYXKHO B 1Ba pasa OoJibllie 3KCIepU-
MEeHTOB, 4TOObl MepeiTH K Jy4lleHd rUIoTese.

KiroueBbie ca0Ba: CKJIOHHOCTh K MNOATBEPAKAEHHIO, CUCTEMHAA WH2KEHepUs, IIPOBEPKaA

THUIIOTE3.
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