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Abstract. One of the biases potentially affecting systems engineers is the
confirmation bias, when instead of selecting the best hypothesis based on the
data, people stick to the previously-selected hypothesis until it is disproved.
In this paper, on a simple example, we show how important it is to take
care of this bias: namely, that because of this bias, we need twice as many
experiments to switch to a better hypothesis.
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1. Formulation of the Problem

Confirmation bias. It is known that our intuitive reasoning shows a lot of un-
expected biases; see, e.g., [2]. One of such biases is a confirmation bias, when,
instead of selecting the best hypothesis based on the data, people stick to the
previously-selected hypothesis until it is disproved. This bias is ubiquitous in
systems engineering; see, e.g., [1,4,5,8].

How important is it to take the confirmation bias into account? Taking
care of the confirmation bias requires some extra effort; see, e.g., [3, 7–9] and
references therein. A natural question is: is the resulting improvement worth this
extra effort? How better the result will we get?

In this paper, on a simple example, we show that the result is drastically better:
namely, that if we properly take this bias into account, then we will need half as
many experiments to switch to a more adequate hypothesis.

2. Analysis of the Problem

Description of the simple example. Let us consider the simplest possible case
when we have a parameter 𝑎 that may be 0 and may be non-zero, and we di-
rectly observe this parameter. We will also make the usual assumption that the
observation inaccuracy is normally distributed, with 0 mean and known standard
deviation 𝜎.
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In this case, what we observe are the values 𝑥1, . . . , 𝑥𝑛 which are related to
the actual (unknown) value 𝑎 by a relation 𝑥𝑖 = 𝑎 + 𝜀𝑖 (𝑖 = 1, . . . , 𝑛), where 𝜀𝑖
are independent normally distributed random variables with 0 means and standard
deviation 𝜎.

Two approaches. In the ideal approach, we select one of the two models – the
null-hypothesis 𝑎 = 0 or the alternative hypothesis 𝑎 ̸= 0 – by using the usual
Akaike Information Criterion (AIC); see, e.g., [6].

In the confirmation-bias approach, we estimate the value 𝑎 based on the ob-
servations 𝑥1, . . . , 𝑥𝑛, and we select the alternative hypothesis only if the resulting
estimate is statistically significantly different from 0 – i.e., e.g., that the 95%
confidence interval for the value 𝑎 does not contain 0.

What if we use AIC. In the AIC, we select a model for which the difference
AIC

def
= 2𝑘 − 2 ln

(︁̂︀𝐿)︁ is the smallest, where 𝑘 is the number of parameters in a

model and ̂︀𝐿 is the largest value of the likelihood function 𝐿 corresponding to this
model.

The null-model 𝑎 = 0 has no parameters at all, so for this model, we have
𝑘 = 0. For 𝑛 independent measurement results, the likelihood function is equal to
the product of the values

1√
2𝜋 · 𝜎

· exp
(︂
− 𝑥2𝑖
2𝜎2

)︂
of the Gaussian probability density function corresponding to these measurement
results 𝑥𝑖. Thus,

𝐿 =
𝑛∏︁

𝑖=1

1√
2𝜋 · 𝜎

· exp
(︂
− 𝑥2𝑖
2𝜎2

)︂
and so, for this model,

AIC0 = −2 ln(𝐿) = 2𝑛 · ln
(︁√

2𝜋 · 𝜎
)︁
+

1

𝜎2
·

𝑛∑︁
𝑖=1

𝑥2𝑖 .

We assume that 𝑥𝑖 = 𝑎 + 𝜀𝑖, where the mean value of 𝜀𝑖 is 0 and the standard
deviation is 𝜎. Thus, the expected value of 𝑥2𝑖 is equal to 𝑎2 + 𝜎2. For large values

𝑛, due to the Law of Large Numbers (see, e.g., [6]), the average
1

𝑛
·

𝑛∑︁
𝑖=1

𝑥2𝑖 is

approximately equal to the expected value 𝐸[𝑥2𝑖 ] = 𝑎2+𝜎2. Thus,
𝑛∑︀

𝑖=1

𝑥2𝑖 ≈ 𝑛·(𝑎2+𝜎2)

and hence,

AIC0 = 2𝑛 · ln
(︁√

2𝜋 · 𝜎
)︁
+

1

𝜎2
· 𝑛 · (𝑎2 + 𝜎2). (1)

The alternative model 𝑎 ̸= 0 has one parameter 𝑎, so here 𝑘 = 1. The corre-
sponding likelihood function is then equal to

𝐿 =
𝑛∏︁

𝑖=1

1√
2𝜋 · 𝜎

· exp
(︂
−(𝑥𝑖 − ̂︀𝑎)2

2𝜎2

)︂
.
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We select the parameter 𝑎 that maximizes the value of this likelihood function.
Maximal likelihood is the usual way of estimating the parameters, which in this

case leads to ̂︀𝑎 =
1

𝑛
·

𝑛∑︁
𝑖=1

𝑥𝑖. For large 𝑛, this estimate is close to the actual value

𝑎, so we have ̂︀𝐿 =
𝑛∏︁

𝑖=1

1√
2𝜋 · 𝜎

· exp
(︂
−(𝑥𝑖 − 𝑎)2

2𝜎2

)︂
.

For this model, 𝑥𝑖 − 𝑎 = 𝜀𝑖, thus,

AIC1 = 2− 2 ln
(︁̂︀𝐿)︁ = 2 + 2𝑛 · ln

(︁√
2𝜋 · 𝜎

)︁
+

1

𝜎2
·

𝑛∑︁
𝑖=1

𝜀2𝑖 .

For large 𝑛, we have
𝑛∑︀

𝑖=1

𝜀2𝑖 ≈ 𝑛 · 𝜎2, hence

AIC1 = 2 + 2𝑛 · ln
(︁√

2𝜋 · 𝜎
)︁
+

1

𝜎2
· 𝑛 · 𝜎2. (2)

The second model is preferable if AIC1 < AIC0. By deleting common terms
in these two values AIC𝑖, we conclude that the desired inequality reduces to

2 <
𝑛 · 𝑎2

𝜎2
, i.e., equivalently, to

𝑛 >
2𝜎2

𝑎2
. (3)

What if we use a confirmation-bias approach. In the confirmation-bias ap-
proach, we estimate 𝑎 – and we have already mentioned that the optimal estimate

is 𝑎 =
1

𝑛
·

𝑛∑︁
𝑖=1

𝑥𝑖. It is known (see, e.g., [6]) that the standard deviation of this

estimate is equal to 𝜎𝑒 =
𝜎√
𝑛
. Thus, the corresponding 95% confidence interval

has the form [𝑎 − 2𝜎𝑒, 𝑎 + 2𝜎𝑒]. The condition that this interval does not contain
0 is equivalent to |𝑎| > 2𝜎𝑒, i.e., equivalently, to 𝑎2 > 4𝜎2

𝑒 . Substituting the above

expression for 𝜎𝑒 into this inequality, we conclude that 𝑎2 > 4·𝜎
2

𝑛
, i.e., equivalently,

that

𝑛 >
4𝜎2

𝑎2
. (4)

Conclusion. By comparing the expressions (3) and (4) corresponding to the two
approaches, we can indeed see that the confirmation-bias approach requires twice
as many measurements than the approach in which we select the best model based
on the data.

Thus indeed, avoiding confirmation bias can lead to a drastic improvement in
our estimates and thus, in our decisions.
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Аннотация. Одним из предубеждений, потенциально влияющих на системных
инженеров, является склонность к подтверждению, когда вместо того, чтобы вы-
брать лучшую гипотезу на основе данных, люди придерживаются ранее выбранной
гипотезы до тех пор, пока она не будет опровергнута. В данной работе на простом
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примере мы показываем, как важно обращать внимание на это предубеждение —
а именно, что из-за этого предубеждения нам нужно в два раза больше экспери-
ментов, чтобы перейти к лучшей гипотезе.

Ключевые слова: склонность к подтверждению, системная инженерия, проверка

гипотез.
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