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Abstract. Infinities are usually an interesting topic for students, especially
when they lead to what seems like paradoxes, when we have two different
seemingly correct answers to the same question. One of such cases is sum-
mation of divergent infinite sums: on the one hand, the sum is clearly infinite,
on the other hand, reasonable ideas lead to a finite value for this same sum.
A usual way to come up with a finite sum for a divergent infinite series is to
find a 1-parametric family of series that includes the given series for a specific
value 𝑝 = 𝑝0 of the corresponding parameter and for which the sum converges
for some other values 𝑝. For the values 𝑝 for which this sum converges, we
find the expression 𝑠(𝑝) for the resulting sum, and then we use the value
𝑠(𝑝0) as the desired sum of the divergent infinite series. To what extent is the
result reasonable depends on how reasonable is the corresponding generalizing
family. In this paper, we show that from the physical viewpoint, the existing
selection of the families is very natural: it is in perfect accordance with the
natural symmetries.
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1. Summation of Divergent Infinite Series: An Interesting
Topic

Infinities are mysterious. Not surprisingly, topics related to infinities are often
exciting for students - especially when it turns out that what seemed simple and
straightforward in the finite case is no longer simple and no longer straightforward.

One such case is the summation of infinite series. At first glance, this seems
to be a straightforward topic:

� some series converge and have a finite sum, while

� some series diverge – e.g., if the resulting sum is infinite.

However, an interesting part is that often,
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� while the usual methods lead to an infinite value of the corresponding sum,

� other techniques lead us to a finite value for the sum of the same series.

Let us start with an example of how we can get such a divergent infinite series
with a finite sum.

2. Summation of Divergent Infinite Series: First Example

In many cases, we can get an explicit formula for the sum of an infinite series
– by properly manipulating this series. For example, for an infinite geometric
progression

𝑠 = 1 + 𝑝+ 𝑝2 + 𝑝3 + . . .+ 𝑝𝑛 + . . . ,

we can multiply this sum by 𝑝, add 0 in front, and get

𝑠 · 𝑝 = 0 + 𝑝+ 𝑝2 + 𝑝3 + . . .+ 𝑝𝑛 + . . .

If we now subtract the new series from the original one term-by-term, all the terms
in the right-hand side disappear except for the first terms 1, so we conclude that
𝑠 · (1− 𝑝) = 1 and thus, that

𝑠 =
1

1− 𝑝
.

So, for the values 𝑝 from −1 to 1, for which the sum of the geometric pro-
gression converges, we get the correct expression for this sum. For example, for

𝑝 = 0.5, we get 𝑠 =
1

1− 0.5
= 2, thus we get

1 + 0.5 + 0.52 + 0.53 + . . .+ 0.5𝑛 + . . . = 2.

Interestingly, the above trick can be applied when the value 𝑝 is outside the
open interval (−1, 1). For example, for 𝑝 = 2, when the above infinite series clearly
diverges, we get

𝑠 =
1

1− 2
= −1,

thus we get a finite sum for the divergent infinite series:

1 + 2 + 22 + 23 + . . .+ 2𝑛 + . . . = −1.

3. Summation of Divergent Infinite Series: General Idea

The above idea shows how, in general, we can come up with a meaningful finite
expression for the divergent infinite series:

� We start with a divergent infinite series for which we want to compute the
sum

𝑠 = 𝑎0 + 𝑎1 + 𝑎2 + . . .+ 𝑎𝑛 + . . .
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� We then find a 1-parametric family of infinite series that includes the desired
series as a particular case, and which is convergent for some values of the
corresponding parameter 𝑝:

𝑠(𝑝) = 𝑎0(𝑝) + 𝑎1(𝑝) + 𝑎2(𝑝) + . . .+ 𝑎𝑛(𝑝) + . . .

� For the cases when the sum converges, we find the explicit expression for
𝑠(𝑝), and then apply this expression to the value 𝑝0 corresponding to the
original series. The resulting value 𝑠(𝑝0) is then returned as the sum of the
original divergent infinite series.

4. First Example Reformulated in These General Terms

Let us show, in detail, that the above derivation is a particular case of this
general idea.

In this example, we want to compute the sum

𝑠 = 1 + 2 + 22 + 23 + . . .+ 2𝑛 + . . .

This sum is divergent, so we find a family of series that includes this sum as a
particular case corresponding to 𝑝0 = 2:

𝑠(𝑝) = 1 + 𝑝+ 𝑝2 + 𝑝3 + . . .+ 𝑝𝑛 + . . .

This sum is convergent for some values of the parameter x: namely, for all the

values 𝑝 from −1 to 1. For these values, 𝑠(𝑝) =
1

1− 𝑝
. To find the desired value of

the sum 𝑠, we thus substitute 𝑝0 = 2 into this formula and get 𝑠 = 𝑠(𝑝0) = 𝑠(2) =
1

1− 2
= −1.

5. Second Example

Let us illustrate the above general idea on another known example of a divergent
series: computing the sum of an infinite arithmetic progression

𝑠 = 1 + 2 + 3 + 4 + . . .

To compute this sum, it turned out to be useful to utilize the following family:

𝑠 = 1𝑝 + 2𝑝 + 3𝑝 + 4𝑝 + . . .

The original sum corresponds to 𝑝0 = 1. The new series is convergent for all values
𝑝 < −1, e.g., for 𝑝 = −2.

To compute the value 𝑠, instead of multiplying the sum by 𝑝 as in the first
example, let us multiply it by 2 · 2𝑝. After the multiplication:

� 1𝑝 becomes 2 · 2𝑝,
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� 2𝑝 becomes 2 · 4𝑝,

� 3𝑝 becomes 2 · 6𝑝, etc.

Let us place 0s so that the term 2 · 2𝑝 be at the same level as 2𝑝, etc. Then, we
get:

2 · 2𝑝 · 𝑠 = 0 + 2 · 2𝑝 + 0 + 2 · 4𝑝 + . . .

Subtracting the new expression from the original series term-by-term, we conclude
that

𝑐 = 1𝑝 − 2𝑝 + 3𝑝 − 4𝑝 + . . . ,

where we denoted 𝑐 def
= 𝑠 · (1− 2 · 2𝑝).

Let us now shift the series by adding 0 in front:

𝑐 = −0𝑝 + 1𝑝 − 2𝑝 + 3𝑝 − . . .

By adding the above two expressions for c, we conclude that

2𝑐 = (1𝑝 − 0𝑝)− (2𝑝 − 1𝑝) + (3𝑝 − 2𝑝)− (4𝑝 − 3𝑝) + . . .

Again, we shift the series by adding 0 in front:

2𝑐 = 0 + (1𝑝 − 0𝑝)− (2𝑝 − 1𝑝) + (3𝑝 − 2𝑝)− . . .

By adding the above two expressions for 2𝑐, and taking into account that 1𝑝− 0𝑝 =
1, we conclude that

4𝑐 = 1− (2𝑝 − 2 · 1𝑝 + 0𝑝) + (3𝑝 − 2 · 2𝑝 + 1𝑝)− (4𝑝 − 2 · 3𝑝 + 2𝑝) + . . .

The advantage of this formula is that for value 𝑝 not exceeding 1, the right-
hand side is a convergent sum. In particular, for 𝑝 = 𝑝0 = 1, each term
(𝑛+ 1)𝑝 − 2 · 𝑛𝑝 + (𝑛− 1)𝑝 in this sum is equal to

(𝑛+ 1)− 2 · 𝑛+ (𝑛− 1) = 0.

Thus, in the expression for 4𝑐, the only non-zero term is the first 1, so 4𝑐 = 1 and
thus 𝑐 = 0.25. By definition, 𝑐 = 𝑠 · (1 − 2 · 2𝑝), i.e., for 𝑝 = 1, we get 𝑐 = −3𝑠.
Thus, we conclude that:

𝑠 = 1 + 2 + 3 + . . .+ 𝑛+ . . . = − 1

12
.

6. How Natural Is All This?

A reasonable question is: OK, we used some tricks, and we got some reasonable
results. But how natural are these tricks? Maybe if we used different tricks, we
would have gotten different results?

In other words, how natural are the families that we chose, families that include
the original series as a particular case? In general, we want to extend the family
based on a single example. Of course, there are many different families that we
could choose. How natural is the selection of the families pn and np that we used
in the above two examples?
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7. Let Us Go Back to The Physical Meaning of the Series

From the purely mathematical viewpoint, it is difficult to see which families
are natural and which are not natural: everything is purely mathematical and thus,
seems to be not very natural.

So, to decide which families are natural and which families are not natural, let
us take into account that the series are not just an abstract mathematical concept,
they are actively used in describing the real world. Typically, infinite series appear
when we measure the value 𝑎(𝑡) of some physical quantity a at some sequential
moments of time

𝑡0, 𝑡1 = 𝑡0 + ℎ, 𝑡2 = 𝑡1 + ℎ = 𝑡0 + 2ℎ, . . . , 𝑡𝑛 = 𝑡𝑛−1 + ℎ = 𝑡0 + 𝑛 · ℎ, . . .

so that 𝑎𝑛 = 𝑎(𝑡𝑛).
So, to find out which series are natural, we need to analyze which function 𝑎(𝑡)

are natural.

8. Natural Symmetries

To analyze which physical dependencies are natural, let us take into account
that the numerical value of a physical quantity depends on the selection of the
measuring unit. If instead of the original measuring unit we use another unit
which is 𝐶 times smaller, then all the numerical values get multiplied by this
constant 𝐶.

For example, if instead of meters we consider centimeter, then all the numerical
values get multiplied by 100: e.g., 2 meters becomes 200 centimeters.

From this viewpoint, the function 𝑎(𝑡) and the function 𝐶 · 𝑎(𝑡) represent the
exact same dependence of the quantity 𝑎 on time 𝑡, but expressed in different
measuring units.

For measuring time, we can also select different units. For time, we also have
an additional freedom – in addition to selecting a different measuring unit, we can
also select a different starting point. For example, during the French revolution, in
the revolutionary calendar, the year of the revolution (1789 in the usual calendar)
was officially designated as Year 1. In general, if as a new starting point, we
select a starting point which is 𝑇 moments earlier than the previous one, then all
numerical values of time are increase by this amount 𝑇 : 𝑡→ 𝑡+ 𝑇 .

9. Natural Functions 𝑎(𝑡)

Physical processes do not change if we simply change measuring units or start-
ing point for measurements. From this viewpoint, it is reasonable to consider a
function 𝑎(𝑡) natural if the corresponding physical process does not depend on the
selection of a measuring unit for time or on the selection of the starting point.

Let us consider these two options one by one.
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10. Case When the Relation 𝑎(𝑡) Does Not Depend on the
Starting Point for Measuring Time

Let us first consider the case when the relation 𝑎(𝑡) does not depend on the
starting point for measuring time.

If we change the starting point, the value 𝑡 is replaced by 𝑡 + 𝑇 , and, corre-
spondingly, the function 𝑎(𝑡) get replaced by the new function 𝑎(𝑡 + 𝑇 ). We want
to make sure that both the original function 𝑎(𝑡) and the new function 𝑎(𝑡 + 𝑇 )
represent the same physical process. As we have mentioned earlier, this means that
the functions 𝑎(𝑡 + 𝑇 ) and 𝑎(𝑡) differ by a multiplicative constant – representing
a change in the unit for measuring 𝑎: 𝑎(𝑡 + 𝑇 ) = 𝐶 · 𝑎(𝑡), for some constant 𝐶
depending on 𝑇 .

In particular, for 𝑇 = ℎ, this means that 𝑎𝑖+1 = 𝑎(𝑡𝑖+1) = 𝑎(𝑡𝑖 + ℎ) = 𝐶 · 𝑎(𝑡𝑖) =
𝐶 · 𝑎𝑖. So:

𝑎1 = 𝐶 · 𝑎0, 𝑎2 = 𝐶 · 𝑎1 = 𝐶2 · 𝑎0, and, in general, 𝑎𝑛 = 𝐶𝑛 · 𝑎0.

Thus, we get – modulo a multiplicative constant 𝑎0 – a geometric progression that
was used in our first example.

11. Case When the Relation 𝑎(𝑡) Does Not Depend on the
Selection of a Measuring Unit for Measuring Time

Let us now consider the case when the relation 𝑎(𝑡) does not depend on the
selection of a measuring unit for measuring time.

Changing such a unit leads to changing 𝑡 to 𝑐 · 𝑡, and 𝑎(𝑡) to 𝑎(𝑐 · 𝑡). The fact
that these two functions should describe the same physical process means that we
should have 𝑎(𝑐 · 𝑡) = 𝐶 · 𝑎(𝑡), for some constant 𝐶 depending on 𝑐, i.e., that we
should have

𝑎(𝑐 · 𝑡) = 𝐶(𝑐) · 𝑎(𝑡).

It makes sense to require that the dependence 𝑎(𝑡) is described by a measurable
(= integrable) function – otherwise, we will not be able to integrate it, while what
we usually observe is not the instantaneous value but rather an average (weighted
integral) over some time interval including the moment 𝑡. For measurable func-
tions, it is known that all solutions of the above functional equation have the form
𝑎(𝑡) = 𝑐0 · 𝑡𝑝 for some constants 𝑐0 and 𝑝; see, e.g., [1].

By changing the starting point for measuring time, we can always take 𝑡0 = 0;
then, 𝑡𝑛 = 𝑛 · ℎ. Thus, we have:

𝑎𝑛 = 𝑎(𝑡𝑛) = 𝑎(𝑛 · ℎ) = 𝑐0 · (𝑛 · ℎ)𝑝 = 𝑛𝑝 · (𝑐0 · ℎ𝑝).

So, modulo a multiplicative constant, we get the dependence np that was used in
the second example.
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12. Conclusion

Our conclusion is that while generalizations used to compute the above two
sums of divergent series sound somewhat arbitrary, in reality, these generalizations
are very natural – they follow directly from the requirement that the corresponding
physical relation not change if we change:

� either the starting point for measuring time,

� or the measuring unit for time.
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Аннотация. Бесконечность обычно является интересной темой для студентов,
особенно когда она приводят к тому, что кажется парадоксом: когда у нас есть два
разных казалось бы правильных ответа на один и тот же вопрос. Одним из таких
случаев является суммирование расходящихся бесконечных сумм: с одной сторо-
ны, сумма явно бесконечна, с другой стороны, разумные идеи приводят к конеч-
ному значению этой же суммы. Обычный способ получить конечную сумму для
расходящегося бесконечного ряда состоит в том, чтобы найти 1-параметрическое
семейство рядов, которое включает в себя данный ряд для конкретного значения
𝑝 = 𝑝0 соответствующего параметра и для которого сумма сходится для некоторых
других значений 𝑝. Для значений 𝑝, для которых эта сумма сходится, мы находим
выражение 𝑠(𝑝) полученной суммы, а затем используем значение 𝑠(𝑝0) в качестве
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искомой суммы расходящегося бесконечного ряда. Насколько обоснован результат
зависит от того, насколько разумно соответствующее обобщающее семейство. В
этой статье мы показываем, что с физической точки зрения существующий выбор
семейств очень естественен: он полностью соответствует естественным симметри-
ям.

Ключевые слова: расходящиеся бесконечные ряды, симметрии.
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