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Abstract. When we have two estimates of the same quantity, it is desirable
to combine them into a single more accurate estimate. In the usual case of
continuous quantities, a natural idea is to take the arithmetic average of the
two estimates. If we have four estimates, then we can divide them into two
pairs, average each pair, and then average the resulting averages. Arithmetic
average is consistent in the sense that the result does not depend on how we
divide the original four estimates into two pairs. For discrete quantities —
e.g., quantities described by integers — the arithmetic average of two integers
is not always an integer. In this case, we need to select one of the two integers
closest to the average. In this paper, we show that no matter how we select
— even if we allow probabilistic selection — the resulting averaging cannot be
always consistent.
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1. Formulation of the Problem

Need for averaging. In many practical situations, we have two (or more) es-
timates x; and o of the same quantity x. In such situations, it is desirable to
combine the two estimates and come up with a single — hopefully more accurate
— estimate zy * x5 of this quantity.

What operation * should be use? In geometric terms, the pair (x1,z5) can be
naturally represented by a point in a 2-D plane. If the estimates were exact, we
would have the exact same number z in both components of this pair, i.e., we
would have the pair (z,z). It is therefore reasonable to look for the value z for
which the corresponding pair (x,z) is the closest to the pair (zy, z3).

The distance between the 2-D points (z,x) and (x1, z3) is equal to

Vi —21)2 + (z — 19)2

Minimizing this distance is equivalent to minimizing its square

(x —21)* + (. — m9)%
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Differentiating this expression with respect to x and equating the derivative to O,
T+ X9

we conclude that x = . Such averaging is indeed one of the main ways to

combine two estimates; see, e.g., [1,5].

Averaging is consistent. If we have four estimates zy, x9, x3, and x4, then a
natural idea is:
e to divide them into two pairs; for example, we can divide into pairs (xy, z3)
and (1‘3, 1'4);
e average values from each pair, coming up with combined estimates x; * x5
and z3 * 24, and
e then average the resulting averages, combing up with the value

(x1 % T9) * (3 % T4).

[t is reasonable to require that the averaging operation is consistent in the sense
that the result of this operation should not change if, on the first stage, we use a
different division into two pairs, i.e., if

(1 % T2) * (T2 % xq) = (21 * T3) * (T2 * T4g).

What if the corresponding quantity is discrete? Some physical quantities —
like electric change — are discrete, in the sense that they can take only values
...,—2e,—e,0,¢e,2e,... proportional to some fixed value e. To make our discussion
simpler, let us select this value e as a measurement unit. In this case, possible
values of the quantity x are integers.

If 1 and z, have the same parity, i.e., if they are either both odd or both event,
1+ X9

then the arithmetic average 7 = is also an integer. However, il one of

the estimates is even, and another is odd — e.g., if x; = 0 and x; = 1 — then
the arithmetic average is no longer an integer. In this case, as one can easily see,
we have two different integers x for which the square (z — x1)? + (z — z2)? of the
distance is the smallest: the floor |Z| and the ceiling [Z] of the corresponding
fraction x. For example, for ;1 = 0 and z; = 1, we have T = 0.5, so |Z] = 0 and
(7] = 1.

Formulation of the problem. We would like to select, for very pair of integers
(x1,22), one of the two possible averages. A natural question is: can we select it
in such a way that the resulting operation is consistent?

What we prove. In this paper, we prove that in the discrete case, averaging
cannot be consistent.

2. Definitions and the Main Result

Definition 1. We say that an operation x : Z x Z — Z that maps pairs of
integers into an integer is a discrete-case averaging if for every pair (xi,xs), the
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result © = xy * vy minimizes the sum (xr — x1)* + (x — 22)%

(21 * g — 351)2 + (1 * g — 372)2 = melg((x — :1:1)2 + (x — x2)2).

Definition 2. We say that a discrete-case averaging * is consistent if for every
four integers x1, x5, w3, and x4, we have

(1 % xg) * (T2 * x4) = (21 % T3) * (9 * Tyg).

Proposition 1. No discrete-case averaging is consistent.

Proof. Let us assume that % is a consistent discrete-case averaging, and let us get
a contradiction out of this assumption.

1°. By definition of a discrete-case averaging, the value 1% 2 should be equal either
to 1 or to 2. Let us show that in both cases, consistency is violated for some values
Ty, Lo, X3, and ZTy.

2°. Let us first consider the case when 1% 2 = 1. Let us prove that in this case,
2% 3=2.

Indeed, by definition of a discrete-case averaging, we have 2x3 = 2 or 2x3 = 3.
However, if 2 %3 = 3, then, due to consistency, we have

(1%2)%(1%3)=(1x1)=(2x3).

We consider the case when 1 x2 = 1; by definition, 1 * 3 = 2, thus the left-hand
side of the above formula has the form (1%2)*(1%3) = 1%2, and we already know
that 1 x2 = 1.

On the other hand, if 2 * 3 = 3, then the right-hand side has the form

(Ix1)*(2%3)=1%3=2.

So, if 2% 3 = 3, then the left-hand side and the right-hand side are different — and

hence, the averaging = is not consistent. Since we assumed that * is consistent,

this means that 2 % 3 cannot be equal to 3 — and thus, it must be equal to 2.
Then, due to consistency, we should also have

(1%2)%(2%3) = (1%3)*(2x%2).

Here, 1 %2 =1 and 2% 3 = 2, so the left-hand side of this equality takes the form
(1%2)%(2%3)=1%2=1.

On the other hand, here 1x3 =2 and 2% 2 = 2, hence the right-hand side takes
the form (1% 3) % (2% 2) =2x2 = 2. So, the left-hand side and right-hand side are
different — and thus, the averaging is not consistent.

3°. To complete the proof, let us consider the remaining case when 1 %2 = 2. Let
us prove that in this case, 0% 1 = 1.
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Indeed, by definition of a discrete-case averaging, we have 0x1 =0 or Ox1 = 1.
However, if 0 % 1 = 0, then, due to consistency, we have

(0%2) % (1%x2)=(0%1)*(2x2).

We consider the case when 1 x 2 = 2; by definition, 0 « 2 = 1, thus the left-hand
side of the above formula has the form (0%2)*(1%2) = 1%2, and we already know
that 1 x2 = 2.

On the other hand, if 0 % 1 = 0, then the right-hand side has the form

(01)%(2%2)=0%2=1.

So, if 0% 1 =0, then the left-hand side and the right-hand side are different — and

hence, the averaging * is not consistent. Since we assumed that x is consistent,

this means that 0 % 1 cannot be equal to 0 — and thus, it must be equal to 1.
Then, due to consistency, we should also have

(1x2)%(0x1)=(1%1)*(0x%2).

Here, 1 %2 =2 and 0% 1 = 1, so the left-hand side of this equality takes the form
(I1x2)%x(0x1)=2%1=2.

On the other hand, here 1x1 =1 and 0% 2 = 1, hence the right-hand side takes
the form (1% 1) % (0%2) =11 = 1. So, the left-hand side and right-hand side are
different — and thus, the averaging is not consistent.

The proposition is proven.

3. What If We Allow Probabilistic Averaging

Idea. The above result is about a deterministic averaging, when to every pair
(x1,22), we assign a single value z; % z5. For example, for z; = 0 and 25 = 1, we
have two possible values z, for which the sum (z — z)? + (z — x5)? is the smallest
— namely, the values 0 and 1, and we pick one of these values.

But if 0 and 1 are equally good, why not select each of them with some probabil-
ity, e.g., with probability 1/2 each? In this case, we get a probabilistic averaging,
for which, for each z; and z», the value x; * 25 is a random variable.

Natural question. Will the resulting probabilistic averaging be consistent — in
the sense that for every 1, x5, 23, and x4, the random variables (xq * x) * (9 % 24)
and (zq * x3) * (9 x x4) have the same distribution?

What we prove. We prove that the answer is still “no” — but at least the above
two random variables have the same mean.

Definition 3. By a probabilistic averaging, we mean an operation x that assigns,
to every pair of integers (x1, ), the following random variable:

e when the sum x1 + xo is even, the random variable x, x xo is equal to
_ def T1 + X2
xr =

with probability 1;
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e when the sum x| + x5 is odd, the random variable is equal either to |T| or
to [T], with some probability.

Definition 4. We say that a probabilistic averaging is consistent if for every
T1, To, T3, and x4, the random variables

(1 * xg) * (x3 * x4) and (xq * x3) * (T * 4)

have the same distribution, where different x operations are assumed to be
independent.

Definition 5. We say that a probabilistic averaging is weakly consistent if
for every w1, wxy, x3, and w4, the random variables (xy * x9) * (v3 * x4) and
(1 * x3) * (x9 * x4) have the same mean.

Proposition 2. No probabilistic averaging is consistent.

Proposition 3. There exists a probabilistic averaging which is weakly consistent.

Proof of Proposition 2. Let us assume that x is a consistent probabilistic aver-
aging, and let us get a contradiction out of this assumption.

1°. Let us first prove that for all pairs (n,n + 1), the probability p of selecting n
as n* (n+ 1) is equal to either 0, or 0.5, or 1.
Indeed, by definition of consistency, we should have

(mxn)x(n+1)x(n+1)=m*x(n+1))*(nx(n+1)).

The left-hand side is equal to nx (n+1) and is, thus, equal to n with probability p.
In the right-hand side, each of the two terms n x (n + 1) is equal to n with
probability p and to n + 1 with the remaining probability 1 — p. Since different
x-operations are assumed independent, we therefore have four possible cases:
e the first case is when both terms nx (n+ 1) are equal to n; the probability of
this case is p - p = p?;
e the second case is when the first term is equal to n and the second term is
equal to n + 1; the probability of this case is equal to p- (1 — p);
e the third case is when the first term is equal to n + 1 and the second term is
equal to n; the probability of this case is equal to (1 —p) - p;
e finally, the fourth case is when both terms n * (n + 1) are equal to n + 1; the
probability of this case is (1 —p)- (1 —p) = (1 —p)>.
In the first case, the value (n* (n+ 1)) * (nx (n+ 1)) is always equal to n, and,
as we recall, this case occurs with probability p?. In the second and third cases,
the value n appears with probability p; thus, the overall probability of getting n in
these cases is 2p- (1 —p)-p = 2p?- (1 —p). In the fourth case, we always get n+ 1.
So, the overall probability of getting n is

P +2p° - (1—p)=p*+2p* — 2p° = 3p° — 2p°.

Since the operation * is consistent, the probability of getting n on both sides
should be equal, so we must get p = 3p*> — 2p®. The first possibility to get this
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equality is to have p = 0. If p # 0, then we can divide both sides by p and get
1 =3p—2-2p? ie. a quadratic equation 2p* — 3p + 1 = 0, whose solutions are
p=0.5and p=1.

2°. From Part 1 of this prool, it follows that the probability p of getting 1 as a
result of 1 %2 is either 0, or 0.5, or 1. Let us first consider the case when p;» > 0.
In this case, let us consider another consistency requirement:

(1%2)%(1%3)=(1%1)%(2x3).

In the left-hand side, 1% 2 is equal to 1 with probability p;» > 0, and to 2 with the
remaining probability 1 — pjo. Here, 1 %3 =2, so (1 x2) x (1 % 3) is equal to 1 %2
with probability pi;» and to 2 % 2 with probability 1 — pi5. In the first case, we get
1 in py5 of the cases, so the overall probability that the left-hand side is 1 is equal
to pi,.

In the right-hand side, 1x1 =1, and 2x*3 is equal to 2 with some probability po3
and to 3 with the remaining probability 1 — po3. Thus, the right-hand side is equal
to 1 % 2 with probability ps3 and to 1% 3 = 2 with probability 1 — py3. In the first
case, we get 1 in pjo of the cases, so the overall probability that the right-hand
side is 1 is equal to pis - pas.

Due to consistency, the probability that the left-hand side is 1 and that the
right-hand side is 1 should be the same, so we get p?, = p1s - po3. Since pia > 0,
we can conclude that pio = pos.

Now, let us consider yet another particular case of consistency:

(1%2)%(2%3) = (1%3)%(2%2).

The right-hand side is always equal to 2 x 2 = 2, while in the left-hand side, we
have 1 %2 = 1 with probability p12, 2 %x 3 = 2 with probability p,3 = p1o and
thus, (1 %2)* (2% 3) = 1 %2 with probability p?,. Out of these cases, we get
(1% 2) % (2% 3) =1 with probability pis - p?5 > 0.

So, in the right-hand side, we never get 1, but in the left-hand side, we get 1
with positive probability — which contradicts to the consistency assumption.

3°. Thus, the case p;» > 0 is impossible, and so, we always have 1 %2 = 2.

In this case, consistency implies that (1%2)*(0%2) = (0*1)*(2%2). Here, 1%2 =2
and 0 % 2 = 1, and thus, the left-hand side is equal to 2% 1 = 2.

The value 0 % 1 is equal to 0 with some probability py; and to 1 with the
remaining probability 1 — pg;. Since 2 x 2 = 2, the right-hand side is equal to
0%2 = 1 with probability pg; and to 1x2 = 2 with probability 1 —pg;. The left-hand
side is always equal to 2, hence the right-hand side cannot be equal to 1, and so
po1 = 0.

Thus, we always have 0 * 1 = 1. In this case, we can use another particular
case of consistency: (1%2)x (0%1) = (1%1) % (0=x2). Here, since 1 x2 = 2 and
0% 1 =1, the left-hand side is equal to 2« 1 = 2, while the right-hand side is equal
to 1x1 =1 — a contradiction.

Thus, the proposition is proven.
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Proof of Proposition 3. One can easily check that, as the desired probabilistic
averaging, we can take the averaging in which, for each pair with non-integer
T, we return both the floor and the ceiling of = with equal probability 1/2. In
this case, the mean is simply the usual arithmetic average, and we know that the
arithmetic average is consistent.
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AnHotaumsa. Korna Mbl ¥MeeM 1Be OLEHKH ONHOH M TOH K€ BeJHYHHBI, »KeJaTeJbHO
00BbENUHUTb UX B OfHY Gosiee TOYHYIO OLEHKY. B 0OBIUHOM c/iy4yae HenpephIBHBIX Be-
JIMUWH eCTeCTBEHHOH Hyeed SIBJSETCS BBIUMC/EHHE CpelHero apru(MeTH4ecKoro IBYX
OLleHOK. Ec/ii MBI UMeeM YeThipe OLEHKH, TO Mbl MOXeM pa3fe/IiThb UX Ha 1Be Maphl,
YCPeIHHUTb KaXKAYI0 Napy, a 3aTeM yCPeoHUTb NoJy4YeHHble cpefHUe 3HaueHus. CpenHee
apu(pMeTHUYeCKOe COCMOSAMEAbHO B TOM CMbIC/E, UTO Pe3yJbTaT He 3aBUCHUT OT TOTO,
KaK MBI pas3ieanM HUCXOHBbIE YeThIpe OLEHKH Ha OBe mapbl. JJisi TUCKPEeTHBIX BeJHYHMH
(HampuMep, BeJIUUHH, OMUCHIBAEMbIX LeJBIMU YUCJIaMH) CpeHee apUPMeTHIeCKOe NBYX
LeJIBIX YHCeJI He BCeraa sIBJseTCs LeJbIM YUCJIOM. B 3TOM ciiydyae HaM HY»KHO BEIOpaTh
OJIHO M3 ABYX LeJIBIX Yucesl, OJHKaiIUX K cpefHeMy. B 3Toll ctaTbe Mbl MOKa3bIBaeM,
YTO HE3aBHCHMO OT TOr0, KaK Mbl BEIOMpaeM (IaKe eCJiM Mbl JOMYCTHM BepPOSITHOCTHBIH
BLIOOp), TONYYeHHOE yCpeqHEeHHe He MOXKeT ObITh BCEraa COCTOSITENbHbBIM.

KuatoueBble ciaoBa: ycpenHeHue, o6paGoTKa OLEHOK, COCTOSITENbHOCTb, JUCKPETHBIH
cayyan.
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