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Abstract. When we have two estimates of the same quantity, it is desirable
to combine them into a single more accurate estimate. In the usual case of
continuous quantities, a natural idea is to take the arithmetic average of the
two estimates. If we have four estimates, then we can divide them into two
pairs, average each pair, and then average the resulting averages. Arithmetic
average is consistent in the sense that the result does not depend on how we
divide the original four estimates into two pairs. For discrete quantities —
e.g., quantities described by integers — the arithmetic average of two integers
is not always an integer. In this case, we need to select one of the two integers
closest to the average. In this paper, we show that no matter how we select
— even if we allow probabilistic selection — the resulting averaging cannot be
always consistent.
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1. Formulation of the Problem

Need for averaging. In many practical situations, we have two (or more) es-
timates 𝑥1 and 𝑥2 of the same quantity 𝑥. In such situations, it is desirable to
combine the two estimates and come up with a single — hopefully more accurate
– estimate 𝑥1 * 𝑥2 of this quantity.

What operation * should be use? In geometric terms, the pair (𝑥1, 𝑥2) can be
naturally represented by a point in a 2-D plane. If the estimates were exact, we
would have the exact same number 𝑥 in both components of this pair, i.e., we
would have the pair (𝑥, 𝑥). It is therefore reasonable to look for the value 𝑥 for
which the corresponding pair (𝑥, 𝑥) is the closest to the pair (𝑥1, 𝑥2).

The distance between the 2-D points (𝑥, 𝑥) and (𝑥1, 𝑥2) is equal to√︀
(𝑥− 𝑥1)2 + (𝑥− 𝑥2)2.

Minimizing this distance is equivalent to minimizing its square

(𝑥− 𝑥1)
2 + (𝑥− 𝑥2)

2.
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Differentiating this expression with respect to 𝑥 and equating the derivative to 0,

we conclude that 𝑥 =
𝑥1 + 𝑥2

2
. Such averaging is indeed one of the main ways to

combine two estimates; see, e.g., [1,5].

Averaging is consistent. If we have four estimates 𝑥1, 𝑥2, 𝑥3, and 𝑥4, then a
natural idea is:

� to divide them into two pairs; for example, we can divide into pairs (𝑥1, 𝑥2)
and (𝑥3, 𝑥4);

� average values from each pair, coming up with combined estimates 𝑥1 * 𝑥2

and 𝑥3 * 𝑥4, and
� then average the resulting averages, combing up with the value

(𝑥1 * 𝑥2) * (𝑥3 * 𝑥4).

It is reasonable to require that the averaging operation is consistent in the sense
that the result of this operation should not change if, on the first stage, we use a
different division into two pairs, i.e., if

(𝑥1 * 𝑥2) * (𝑥2 * 𝑥4) = (𝑥1 * 𝑥3) * (𝑥2 * 𝑥4).

What if the corresponding quantity is discrete? Some physical quantities —
like electric change — are discrete, in the sense that they can take only values
. . . ,−2𝑒,−𝑒, 0, 𝑒, 2𝑒, . . . proportional to some fixed value 𝑒. To make our discussion
simpler, let us select this value 𝑒 as a measurement unit. In this case, possible
values of the quantity 𝑥 are integers.

If 𝑥1 and 𝑥2 have the same parity, i.e., if they are either both odd or both event,

then the arithmetic average 𝑥 =
𝑥1 + 𝑥2

2
is also an integer. However, if one of

the estimates is even, and another is odd — e.g., if 𝑥1 = 0 and 𝑥1 = 1 — then
the arithmetic average is no longer an integer. In this case, as one can easily see,
we have two different integers 𝑥 for which the square (𝑥− 𝑥1)

2 + (𝑥− 𝑥2)
2 of the

distance is the smallest: the floor ⌊𝑥⌋ and the ceiling ⌈𝑥⌉ of the corresponding
fraction 𝑥. For example, for 𝑥1 = 0 and 𝑥2 = 1, we have 𝑥 = 0.5, so ⌊𝑥⌋ = 0 and
⌈𝑥⌉ = 1.

Formulation of the problem. We would like to select, for very pair of integers
(𝑥1, 𝑥2), one of the two possible averages. A natural question is: can we select it
in such a way that the resulting operation is consistent?

What we prove. In this paper, we prove that in the discrete case, averaging
cannot be consistent.

2. Definitions and the Main Result

Definition 1. We say that an operation * : 𝑍 × 𝑍 → 𝑍 that maps pairs of
integers into an integer is a discrete-case averaging if for every pair (𝑥1, 𝑥2), the
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result 𝑥 = 𝑥1 * 𝑥2 minimizes the sum (𝑥− 𝑥1)
2 + (𝑥− 𝑥2)

2:

(𝑥1 * 𝑥2 − 𝑥1)
2 + (𝑥1 * 𝑥2 − 𝑥2)

2 = min
𝑥∈𝑍

((𝑥− 𝑥1)
2 + (𝑥− 𝑥2)

2).

Definition 2. We say that a discrete-case averaging * is consistent if for every
four integers 𝑥1, 𝑥2, 𝑥3, and 𝑥4, we have

(𝑥1 * 𝑥2) * (𝑥2 * 𝑥4) = (𝑥1 * 𝑥3) * (𝑥2 * 𝑥4).

Proposition 1. No discrete-case averaging is consistent.

Proof. Let us assume that * is a consistent discrete-case averaging, and let us get
a contradiction out of this assumption.

1∘. By definition of a discrete-case averaging, the value 1 * 2 should be equal either
to 1 or to 2. Let us show that in both cases, consistency is violated for some values
𝑥1, 𝑥2, 𝑥3, and 𝑥4.

2∘. Let us first consider the case when 1 * 2 = 1. Let us prove that in this case,
2 * 3 = 2.

Indeed, by definition of a discrete-case averaging, we have 2*3 = 2 or 2*3 = 3.
However, if 2 * 3 = 3, then, due to consistency, we have

(1 * 2) * (1 * 3) = (1 * 1) * (2 * 3).

We consider the case when 1 * 2 = 1; by definition, 1 * 3 = 2, thus the left-hand
side of the above formula has the form (1 * 2) * (1 * 3) = 1 * 2, and we already know
that 1 * 2 = 1.

On the other hand, if 2 * 3 = 3, then the right-hand side has the form

(1 * 1) * (2 * 3) = 1 * 3 = 2.

So, if 2 * 3 = 3, then the left-hand side and the right-hand side are different — and
hence, the averaging * is not consistent. Since we assumed that * is consistent,
this means that 2 * 3 cannot be equal to 3 — and thus, it must be equal to 2.

Then, due to consistency, we should also have

(1 * 2) * (2 * 3) = (1 * 3) * (2 * 2).

Here, 1 * 2 = 1 and 2 * 3 = 2, so the left-hand side of this equality takes the form
(1 * 2) * (2 * 3) = 1 * 2 = 1.

On the other hand, here 1 * 3 = 2 and 2 * 2 = 2, hence the right-hand side takes
the form (1 * 3) * (2 * 2) = 2 * 2 = 2. So, the left-hand side and right-hand side are
different — and thus, the averaging is not consistent.

3∘. To complete the proof, let us consider the remaining case when 1 * 2 = 2. Let
us prove that in this case, 0 * 1 = 1.
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Indeed, by definition of a discrete-case averaging, we have 0*1 = 0 or 0*1 = 1.
However, if 0 * 1 = 0, then, due to consistency, we have

(0 * 2) * (1 * 2) = (0 * 1) * (2 * 2).

We consider the case when 1 * 2 = 2; by definition, 0 * 2 = 1, thus the left-hand
side of the above formula has the form (0 * 2) * (1 * 2) = 1 * 2, and we already know
that 1 * 2 = 2.

On the other hand, if 0 * 1 = 0, then the right-hand side has the form

(0 * 1) * (2 * 2) = 0 * 2 = 1.

So, if 0 * 1 = 0, then the left-hand side and the right-hand side are different — and
hence, the averaging * is not consistent. Since we assumed that * is consistent,
this means that 0 * 1 cannot be equal to 0 — and thus, it must be equal to 1.

Then, due to consistency, we should also have

(1 * 2) * (0 * 1) = (1 * 1) * (0 * 2).

Here, 1 * 2 = 2 and 0 * 1 = 1, so the left-hand side of this equality takes the form
(1 * 2) * (0 * 1) = 2 * 1 = 2.

On the other hand, here 1 * 1 = 1 and 0 * 2 = 1, hence the right-hand side takes
the form (1 * 1) * (0 * 2) = 1 * 1 = 1. So, the left-hand side and right-hand side are
different — and thus, the averaging is not consistent.

The proposition is proven.

3. What If We Allow Probabilistic Averaging

Idea. The above result is about a deterministic averaging, when to every pair
(𝑥1, 𝑥2), we assign a single value 𝑥1 * 𝑥2. For example, for 𝑥1 = 0 and 𝑥2 = 1, we
have two possible values 𝑥, for which the sum (𝑥− 𝑥1)

2 + (𝑥− 𝑥2)
2 is the smallest

— namely, the values 0 and 1, and we pick one of these values.
But if 0 and 1 are equally good, why not select each of them with some probabil-

ity, e.g., with probability 1/2 each? In this case, we get a probabilistic averaging,
for which, for each 𝑥1 and 𝑥2, the value 𝑥1 * 𝑥2 is a random variable.

Natural question. Will the resulting probabilistic averaging be consistent — in
the sense that for every 𝑥1, 𝑥2, 𝑥3, and 𝑥4, the random variables (𝑥1 *𝑥2) * (𝑥2 *𝑥4)
and (𝑥1 * 𝑥3) * (𝑥2 * 𝑥4) have the same distribution?

What we prove. We prove that the answer is still “no” — but at least the above
two random variables have the same mean.

Definition 3. By a probabilistic averaging, we mean an operation * that assigns,
to every pair of integers (𝑥1, 𝑥2), the following random variable:

� when the sum 𝑥1 + 𝑥2 is even, the random variable 𝑥1 * 𝑥2 is equal to

𝑥
def
=

𝑥1 + 𝑥2

2
with probability 1;
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� when the sum 𝑥1 + 𝑥2 is odd, the random variable is equal either to ⌊𝑥⌋ or
to ⌈𝑥⌉, with some probability.

Definition 4. We say that a probabilistic averaging is consistent if for every
𝑥1, 𝑥2, 𝑥3, and 𝑥4, the random variables

(𝑥1 * 𝑥2) * (𝑥3 * 𝑥4) and (𝑥1 * 𝑥3) * (𝑥2 * 𝑥4)

have the same distribution, where different * operations are assumed to be
independent.

Definition 5. We say that a probabilistic averaging is weakly consistent if
for every 𝑥1, 𝑥2, 𝑥3, and 𝑥4, the random variables (𝑥1 * 𝑥2) * (𝑥3 * 𝑥4) and
(𝑥1 * 𝑥3) * (𝑥2 * 𝑥4) have the same mean.

Proposition 2. No probabilistic averaging is consistent.

Proposition 3. There exists a probabilistic averaging which is weakly consistent.

Proof of Proposition 2. Let us assume that * is a consistent probabilistic aver-
aging, and let us get a contradiction out of this assumption.

1∘. Let us first prove that for all pairs (𝑛, 𝑛 + 1), the probability 𝑝 of selecting 𝑛
as 𝑛 * (𝑛 + 1) is equal to either 0, or 0.5, or 1.

Indeed, by definition of consistency, we should have

(𝑛 * 𝑛) * ((𝑛 + 1) * (𝑛 + 1)) = (𝑛 * (𝑛 + 1)) * (𝑛 * (𝑛 + 1)).

The left-hand side is equal to 𝑛 * (𝑛+ 1) and is, thus, equal to 𝑛 with probability 𝑝.
In the right-hand side, each of the two terms 𝑛 * (𝑛 + 1) is equal to 𝑛 with

probability 𝑝 and to 𝑛 + 1 with the remaining probability 1 − 𝑝. Since different
*-operations are assumed independent, we therefore have four possible cases:

� the first case is when both terms 𝑛 * (𝑛+ 1) are equal to 𝑛; the probability of
this case is 𝑝 · 𝑝 = 𝑝2;

� the second case is when the first term is equal to 𝑛 and the second term is
equal to 𝑛 + 1; the probability of this case is equal to 𝑝 · (1 − 𝑝);

� the third case is when the first term is equal to 𝑛 + 1 and the second term is
equal to 𝑛; the probability of this case is equal to (1 − 𝑝) · 𝑝;

� finally, the fourth case is when both terms 𝑛 * (𝑛 + 1) are equal to 𝑛 + 1; the
probability of this case is (1 − 𝑝) · (1 − 𝑝) = (1 − 𝑝)2.

In the first case, the value (𝑛 * (𝑛 + 1)) * (𝑛 * (𝑛 + 1)) is always equal to 𝑛, and,
as we recall, this case occurs with probability 𝑝2. In the second and third cases,
the value 𝑛 appears with probability 𝑝; thus, the overall probability of getting 𝑛 in
these cases is 2𝑝 · (1− 𝑝) · 𝑝 = 2𝑝2 · (1− 𝑝). In the fourth case, we always get 𝑛+ 1.
So, the overall probability of getting 𝑛 is

𝑝2 + 2𝑝2 · (1 − 𝑝) = 𝑝2 + 2𝑝2 − 2𝑝3 = 3𝑝2 − 2𝑝3.

Since the operation * is consistent, the probability of getting 𝑛 on both sides
should be equal, so we must get 𝑝 = 3𝑝2 − 2𝑝3. The first possibility to get this
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equality is to have 𝑝 = 0. If 𝑝 ̸= 0, then we can divide both sides by 𝑝 and get
1 = 3𝑝 − 2 · 2𝑝2, i.e., a quadratic equation 2𝑝2 − 3𝑝 + 1 = 0, whose solutions are
𝑝 = 0.5 and 𝑝 = 1.

2∘. From Part 1 of this proof, it follows that the probability 𝑝12 of getting 1 as a
result of 1 * 2 is either 0, or 0.5, or 1. Let us first consider the case when 𝑝12 > 0.

In this case, let us consider another consistency requirement:

(1 * 2) * (1 * 3) = (1 * 1) * (2 * 3).

In the left-hand side, 1 * 2 is equal to 1 with probability 𝑝12 > 0, and to 2 with the
remaining probability 1 − 𝑝12. Here, 1 * 3 = 2, so (1 * 2) * (1 * 3) is equal to 1 * 2
with probability 𝑝12 and to 2 * 2 with probability 1 − 𝑝12. In the first case, we get
1 in 𝑝12 of the cases, so the overall probability that the left-hand side is 1 is equal
to 𝑝212.

In the right-hand side, 1*1 = 1, and 2*3 is equal to 2 with some probability 𝑝23
and to 3 with the remaining probability 1 − 𝑝23. Thus, the right-hand side is equal
to 1 * 2 with probability 𝑝23 and to 1 * 3 = 2 with probability 1 − 𝑝23. In the first
case, we get 1 in 𝑝12 of the cases, so the overall probability that the right-hand
side is 1 is equal to 𝑝12 · 𝑝23.

Due to consistency, the probability that the left-hand side is 1 and that the
right-hand side is 1 should be the same, so we get 𝑝212 = 𝑝12 · 𝑝23. Since 𝑝12 > 0,
we can conclude that 𝑝12 = 𝑝23.

Now, let us consider yet another particular case of consistency:

(1 * 2) * (2 * 3) = (1 * 3) * (2 * 2).

The right-hand side is always equal to 2 * 2 = 2, while in the left-hand side, we
have 1 * 2 = 1 with probability 𝑝12, 2 * 3 = 2 with probability 𝑝23 = 𝑝12 and
thus, (1 * 2) * (2 * 3) = 1 * 2 with probability 𝑝212. Out of these cases, we get
(1 * 2) * (2 * 3) = 1 with probability 𝑝12 · 𝑝212 > 0.

So, in the right-hand side, we never get 1, but in the left-hand side, we get 1
with positive probability — which contradicts to the consistency assumption.

3∘. Thus, the case 𝑝12 > 0 is impossible, and so, we always have 1 * 2 = 2.

In this case, consistency implies that (1*2)*(0*2) = (0*1)*(2*2). Here, 1*2 = 2
and 0 * 2 = 1, and thus, the left-hand side is equal to 2 * 1 = 2.

The value 0 * 1 is equal to 0 with some probability 𝑝01 and to 1 with the
remaining probability 1 − 𝑝01. Since 2 * 2 = 2, the right-hand side is equal to
0*2 = 1 with probability 𝑝01 and to 1*2 = 2 with probability 1−𝑝01. The left-hand
side is always equal to 2, hence the right-hand side cannot be equal to 1, and so
𝑝01 = 0.

Thus, we always have 0 * 1 = 1. In this case, we can use another particular
case of consistency: (1 * 2) * (0 * 1) = (1 * 1) * (0 * 2). Here, since 1 * 2 = 2 and
0 * 1 = 1, the left-hand side is equal to 2 * 1 = 2, while the right-hand side is equal
to 1 * 1 = 1 — a contradiction.

Thus, the proposition is proven.
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Proof of Proposition 3. One can easily check that, as the desired probabilistic
averaging, we can take the averaging in which, for each pair with non-integer
𝑥, we return both the floor and the ceiling of 𝑥 with equal probability 1/2. In
this case, the mean is simply the usual arithmetic average, and we know that the
arithmetic average is consistent.
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Аннотация. Когда мы имеем две оценки одной и той же величины, желательно
объединить их в одну более точную оценку. В обычном случае непрерывных ве-
личин естественной идеей является вычисление среднего арифметического двух
оценок. Если мы имеем четыре оценки, то мы можем разделить их на две пары,
усреднить каждую пару, а затем усреднить полученные средние значения. Среднее
арифметическое состоятельно в том смысле, что результат не зависит от того,
как мы разделим исходные четыре оценки на две пары. Для дискретных величин
(например, величин, описываемых целыми числами) среднее арифметическое двух
целых чисел не всегда является целым числом. В этом случае нам нужно выбрать
одно из двух целых чисел, ближайших к среднему. В этой статье мы показываем,
что независимо от того, как мы выбираем (даже если мы допустим вероятностный
выбор), полученное усреднение не может быть всегда состоятельным.

Ключевые слова: усреднение, обработка оценок, состоятельность, дискретный

случай.
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