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Abstract. Earthquakes can be devastating, thus it is important to gain a
good understanding of the corresponding geophysical processes. One of the
challenges in geophysics is that we cannot directly measure the corresponding
deep-earth quantities, we have to rely on expert knowledge, knowledge which
often comes in terms of imprecise (“fuzzy”) words from natural language. To
formalize this knowledge, it is reasonable to use techniques that were specif-
ically designed for such a formalization — namely, fuzzy techniques. In this
paper, we formulate the problem of optimally representing such knowledge. By
solving the corresponding optimization problem, we conclude that the optimal
representation involves using piecewise-constant functions. For geophysics
applications, this means that we need to go beyond tectonic plates to explic-
itly consider parts of the plates that move during the earthquake. We argue
that such an analysis will lead to a better understanding of earthquake-related
geophysics.

Keywords: earthquake geophysics, soft computing, Haar wavelets.

1. Specifics of Data Processing in Earthquake Analysis
(and in Geophysics in General)

Earthquake analysis is important. Earthquakes can be devastating. It is there-
fore important to gain as much understanding about the corresponding geophysical
processes as possible; see, e.g., [1,7].

Usual approach to data processing. A good understanding means that we know,
for each location (𝑥, 𝑦) and for each depth 𝑧, what is the density 𝜌 at this location
and this depth, what are the mechanical properties of the material at this 3-D
location 𝑢 = (𝑥, 𝑦, 𝑧), what are the stresses at this 3-D location. In other words,
we need to find the corresponding functions like 𝜌(𝑢) = 𝜌(𝑥, 𝑦, 𝑧).
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How can we describe a function in a computer? A usual way is to select a basis
of functions

𝑒1(𝑢), 𝑒2(𝑢), . . . , (1)

so that each desired function 𝑓(𝑢) can be represented as a linear combination of
the basis functions

𝑓(𝑢) = 𝑐1 · 𝑒1(𝑢) + 𝑐2 · 𝑢2(𝑢) + . . . ,

and then represent the desired function 𝑓(𝑥) by the corresponding coefficients

(𝑐1, 𝑐2, . . .). (2)

In principle, we can consider different bases, but it is usually convenient to
orthonormalize them, i.e., to consider linear combinations

𝑒𝑜𝑛𝑖 (𝑥) =
𝑖∑︁

𝑗=1

𝑐𝑖𝑗 · 𝑒𝑗(𝑢)

for which, for all 𝑖 and 𝑗, we have∫︁
(𝑒𝑜𝑛𝑖 (𝑢))2 𝑑𝑢 = 1

and ∫︁
𝑒𝑜𝑛𝑖 (𝑢) · 𝑒𝑜𝑛𝑗 (𝑢) 𝑑𝑢 = 0 when 𝑖 ̸= 𝑗.

In this case, the desired coefficients 𝑐𝑖 can be obtained by using a simple formula

𝑐𝑖 =

∫︁
𝑓(𝑢) · 𝑒𝑜𝑛𝑖 (𝑢) 𝑑𝑢. (3)

Thus, without losing generality, we can safely assume that the basis (1) is or-
thonormal.

The most widely used examples of such bases are:
� sines and cosines, and
� wavelets; see, e.g., [2,4,6,11].

For sines and cosines, the expansion into the corresponding basis is known as
Fourier transform. For wavelets, the transformation from the original function
𝑓(𝑢) to the coefficients 𝑐𝑖 is known as the wavelet transform.

It is important to select an appropriate basis. It is known that selecting an
appropriate basis can drastically improve the quality of the data processing results.

For example, in many cases, wavelet analysis has led to interesting discoveries
that were not possible when Fourier analysis was used to process the corresponding
data.

It is therefore very important, in each practical situations, to select the most
appropriate basis.
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What we plan to do in this paper: main idea. In this paper, we provide
arguments for selecting the most appropriate basis for earthquake-related analysis.
In this analysis, we use the specific features of the geophysical data processing.

Specifics of geophysical data processing. In comparison with most other data
processing situations, geophysical analysis has two important specifics.

First, in most data processing situations, we have continuous functions. For
example, when we control a vehicle, its location continuously depends on time. In
contrast, in geophysics, there are clear discontinuities:

� as we go deeper,
� we have an abrupt transition between different layers.
The second difference is that in most other data processing situations, we can

determine the ground truth, i.e., the actual values of the corresponding quantities.
In geophysics, our ability to get the ground truth is very limited: up to a certain
depth, we can drill a borehole and find out what are the actual properties, but at
larger depths, this is not practically possible.

Why soft computing. Since we cannot determine the actual values to check
different models, we have to rely on expert knowledge to decide which model
works better.

Expert knowledge rarely comes in precise terms, it usually comes in terms of
imprecise (“fuzzy”) words. To describe the corresponding knowledge in precise
terms, it is therefore reasonable to use techniques specifically designed to handle
such knowledge — namely, the techniques of fuzzy logic; see, e.g., [3, 5, 8–10, 12,
13].

2. Analysis of the Problem

Main idea. Since the values 𝑓(𝑢) comes from expert estimates, they come with
a fuzzy uncertainty. In other words, for every 𝑢, we have fuzzy information about
the difference Δ𝑓(𝑢)

def
= ̃︀𝑓(𝑢)− 𝑓(𝑢) between:

� the expert estimate ̃︀𝑓(𝑢) and
� the actual (unknown) value 𝑓(𝑢).

In precise terms, this means that:
� we do not know the probabilities of different possible values of Δ𝑓(𝑢), but
� we have a membership function 𝜇(Δ𝑓) that describes, for each possible value
Δ𝑓 , the degree to which this value is possible.

Since we have no reason to assume that the estimation errors are positive or
negative, it is reasonable to assume that the degree of possibility of each value Δ𝑓
does not depend on its sign: 𝜇(−Δ𝑓) = 𝜇(Δ𝑓).

Once we have selected the basis 𝑒𝑖(𝑢), we will then transform the estimate for
𝑓(𝑢) into the sequence of the corresponding coefficients 𝑐𝑖.

� Since the values 𝑓(𝑢) are known with uncertainty,
� as a result, we can only determine the coefficients 𝑐𝑖 — and thus, the corre-

sponding term 𝑐𝑖 · 𝑒𝑖(𝑢) — with uncertainty.
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A reasonable idea is to select the basis 𝑒𝑖(𝑢) for which this uncertainty in the
term 𝑐𝑖 · 𝑒𝑖(𝑢) is the smallest possible.

Let us describe this idea in precise terms. When we process the expert
estimates ̃︀𝑓(𝑢), we get the following estimates ̃︀𝑐𝑖 for the coefficients 𝑐𝑖:

̃︀𝑐𝑖 = ∫︁ ̃︀𝑓(𝑢) · 𝑒𝑖(𝑢) 𝑑𝑢. (4)

The actual (unknown) value 𝑐𝑖 of the corresponding coefficient can be obtained if
we apply the same procedure to the actual (unknown) function 𝑓(𝑢):

𝑐𝑖 =

∫︁
𝑓(𝑢) · 𝑒𝑖(𝑢) 𝑑𝑢. (5)

If we subtract (5) from (4) and take into account that the integral of the difference
is equal to the difference of the integrals, we get the following formula for the

inaccuracy Δ𝑐𝑖
def
= ̃︀𝑐𝑖 − 𝑐𝑖:

Δ𝑐𝑖 =

∫︁
Δ𝑓(𝑢) · 𝑒𝑖(𝑢) 𝑑𝑢. (6)

The inaccuracy in the product 𝑐𝑖 · 𝑒𝑖(𝑢) is equal to the product Δ𝑐𝑖 · 𝑒𝑖(𝑢). This
value depends on the location 𝑢:

� for some locations 𝑢, the value |𝑒𝑖(𝑢)| is larger, so the inaccuracy is larger;
� for other locations 𝑢, the value |𝑒𝑖(𝑢)| is smaller, so the inaccuracy is smaller.

It is reasonable to minimize the worst-case inaccuracy

Δ𝑐𝑖 ·max
𝑢

|𝑒𝑖(𝑢)| = max
𝑢

|𝑒𝑖(𝑢)| ·
∫︁

Δ𝑓(𝑢) · 𝑒𝑖(𝑢) 𝑑𝑢. (7)

Here, each value Δ𝑓(𝑢) is a fuzzy number, so Δ𝑐𝑖 is also a fuzzy number. In
fuzzy logic, this fuzzy number is determined by the Zadeh’s extension principle.

It is known that in general, computing the result 𝑌 = 𝑓(𝑋1, . . . , 𝑋𝑛) of applying
a function 𝑓(𝑥1, . . . , 𝑥𝑛) to 𝑛 fuzzy numbers 𝑋1, . . . , 𝑋𝑛 can be described as follows:

for each 𝛼 ∈ (0, 1], the 𝛼-cut 𝑌 (𝛼)
def
= {𝑦 : 𝜇(𝑦) > 𝛼} is equal to the range of the

function 𝑓(𝑥1, . . . , 𝑥𝑛) when each 𝑥𝑖 takes values from the corresponding 𝛼-cut

𝑋𝑖(𝛼)
def
= {𝑥𝑖 : 𝜇𝑖(𝑥𝑖) > 𝛼}. In precise terms, we have

𝑌 (𝛼) = {𝑓(𝑥1, . . . , 𝑥𝑛) : 𝑥1 ∈ 𝑋1(𝛼), . . . , 𝑥𝑛 ∈ 𝑋𝑛(𝛼)}.

Let us apply this general result to our formula (7). Since the membership
function 𝜇(Δ𝑓) does not change if we change the sign of the difference Δ𝑓 , for
each 𝛼, the corresponding 𝛼-cut is a symmetric interval. Let us denote this interval
by

[−Δ(𝛼),Δ(𝛼)].

The expression (7) is a linear combination of all the values Δ𝑓(𝑢):
� when 𝑒𝑖(𝑢) > 0, this function is increasing in Δ𝑓(𝑢);
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� when 𝑒𝑖(𝑢) < 0, this function is decreasing in Δ𝑓(𝑢).
Thus, when each value Δ𝑓(𝑢) takes all possible values from the interval
[−Δ(𝛼),Δ(𝛼)], the largest possible value of the expression (6) is attained when:

� for those 𝑢 for which 𝑒𝑖(𝑢) > 0, the value Δ𝑓(𝑢) is the largest possible, i.e.,
Δ𝑓(𝑢) = Δ(𝛼), and

� for those 𝑢 for which 𝑒𝑖(𝑢) < 0, the value Δ𝑓(𝑢) is the smallest possible, i.e.,
Δ𝑓(𝑢) = −Δ(𝛼).

In both cases, the largest possible value of the product Δ𝑓(𝑢) · 𝑒𝑖(𝑢) is equal to
Δ(𝛼) · |𝑒𝑖(𝑢)|. Thus, the largest possible value of the integral (6) is equal to∫︁

Δ(𝛼) · |𝑒𝑖(𝑢)| 𝑑𝑢 = Δ(𝛼) ·
∫︁

|𝑒𝑖(𝑢)| 𝑑𝑢.

Hence, the largest possible value of the integral (7) is equal to

Δ(𝛼) ·max
𝑢

|𝑒𝑖(𝑢)| ·
∫︁

|𝑒𝑖(𝑢)| 𝑑𝑢.

Similarly, we can show that the smallest possible value of the expression (7) is
equal to

−Δ(𝛼) ·max
𝑢

|𝑒𝑖(𝑢)| ·
∫︁

|𝑒𝑖(𝑢)| 𝑑𝑢.

Thus, 𝑌 (𝛼) = [−𝑦(𝛼), 𝑦(𝛼)], where

𝑦(𝛼)
def
= Δ(𝛼) ·max

𝑢
|𝑒𝑖(𝑢)| ·

∫︁
|𝑒𝑖(𝑢)| 𝑑𝑢.

The estimate for 𝑐𝑖 is the most accurate when this interval is the narrowest
possible, i.e., when the value

Δ(𝛼) ·max
𝑢

|𝑒𝑖(𝑢)| ·
∫︁

|𝑒𝑖(𝑢)| 𝑑𝑢

is the smallest possible.
In this product, the factor Δ(𝛼) is given. So, the smallest possible value of the

above product is attained when the product

max
𝑢

|𝑒𝑖(𝑢)| ·
∫︁

|𝑒𝑖(𝑢)| 𝑑𝑢 (9)

attains its smallest possible value. Hence, we arrive at the following optimization
problem.

Resulting optimization problem. Among all possible functions 𝑒𝑖(𝑢) for which∫︀
𝑒2𝑖 (𝑢) 𝑑𝑢 = 1, we need to find the function with the smallest possible value of the

product (9).

Analysis of the resulting optimization problem. We always have 𝑒2𝑖 (𝑢) =
|𝑒𝑖(𝑢)|2. Thus,

∫︀
|𝑒𝑖(𝑢)|2 𝑑𝑢 =

∫︀
𝑒2𝑖 (𝑢) 𝑑𝑢 = 1.
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Also, for every 𝑢, we have 𝑒𝑖(𝑢) 6 max𝑣 |𝑒𝑖(𝑣)|. Hence,

|𝑒𝑖(𝑢)|2 6
(︁
max

𝑣
|𝑒𝑖(𝑣)|

)︁
· |𝑒𝑖(𝑢)|. (10)

Integrating both parts of this inequality, we conclude that

1 =

∫︁
|𝑒𝑖(𝑢)|2 𝑑𝑢 6 max

𝑣
|𝑒𝑖(𝑣)| ·

∫︁
|𝑒𝑖(𝑢)| 𝑑𝑢. (11)

Thus, the product (9) that we want to minimize cannot be smaller than 1. One
can easily check that when |𝑒𝑖(𝑢)| = const for all 𝑢 from the given region, we get
exact equality in the formula (1) and thus, in formula (11).

So, when the absolute value |𝑒𝑖(𝑢)| is constant, we attain the smallest possible
value 1 of the desired product (9).

Vice versa, if at least for one value 𝑢, we have strict inequality in (10), we will
have strict inequality in (11) as well. So, to attain the smallest possible value of
the product (9), we must always have equality in the formula (1), i.e., we must
always have the following equality:

|𝑒𝑖(𝑢)|2 =
(︁
max

𝑣
|𝑒𝑖(𝑣)|

)︁
· |𝑒𝑖(𝑢)|. (12)

When 𝑒𝑖(𝑢) ̸= 0, we can divide both sides of this equality by |𝑒𝑖(𝑢)| and conclude
that |𝑒𝑖(𝑢)| = max𝑣 |𝑒𝑖(𝑣)|. In other words, for every 𝑢:

� we either have 𝑒𝑖(𝑢) = 0

� or we have |𝑒𝑖(𝑢)| equal to the largest possible value 𝑚 def
= max

𝑣
|𝑒𝑖(𝑣)|.

So, we arrive at the following conclusion:

Resulting solution. Each function 𝑒𝑖(𝑢) from the geophysically optimal basis take
only three values: 0, 𝑚, and −𝑚, for some real number 𝑚 > 0.

This means, in particular, that all the optimal basis functions are piecewise-
constant.

Comment. Let us consider the geophysical meaning of this result.

3. Geophysical Meaning of Our Result

What does our result means in terms of earthquake analysis. An earthquake
leads to a spatial shift at different locations. For catastrophic earthquakes, this
shift can be in meters; for smaller earthquakes, we can have centimeters-size shift.

In general, we have a shift 𝑠(𝑥, 𝑦) as a function of 2-D spatial coordinates. Our
optimization result shows that the optimal way to analyze the empirical data about
this shift is to represent it as a linear combination

∑︀
𝑐𝑖 ·𝑒𝑖(𝑢) of piece-wise constant

functions 𝑒𝑖(𝑢). Such a linear combination is also piece-wise constant. Thus, what
we need to do is to divide the whole area into several zones, in each of which the
shift is fixed.
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In geometric terms, this means that instead of considering each spatial location
(𝑥, 𝑦) by itself, we divide the whole region into parts, each of which moves as a
whole (i.e., as a solid body).

How do we transform the observed shifts into this piece-wise constant
presentation: an algorithm. When a function is piece-wise constant, it means
that it attains finitely many different values. Let us sort these values into an
increasing order: 𝑠1 < 𝑠2 < . . . < 𝑠𝑚.

Suppose at first that these values are given. In this case, we want to approxi-
mate the original function 𝑓(𝑢) by a piece-wise constant function 𝑎(𝑢) that takes
values 𝑠𝑖. For each 𝑢, the value 𝑎(𝑢) is equal to one of the values 𝑠1, . . . , 𝑠𝑚. Thus,
describing the function 𝑎(𝑢) is equivalent to describing, for each 𝑖 from 1 to 𝑚,
the set 𝑆𝑖 of all the locations 𝑢 for which 𝑎(𝑢) = 𝑠𝑖. These 𝑚 sets should form
a partition of the original domain 𝑆, i.e., we should have 𝑆1 ∪ . . . ∪ 𝑆𝑚 = 𝑆 and
𝑆𝑖 ∩ 𝑆𝑗 = ∅ for all 𝑖 ̸= 𝑗.

A natural idea is to use the Least Squares approach, i.e., to find such a function
𝑎(𝑢) for which the integral

∫︀
(𝑓(𝑢) − 𝑎(𝑢))2 𝑑𝑢 attains the smallest possible value.

One can easily check that the integral attains the smallest possible value if and
only if for each 𝑢, we select the value 𝑎(𝑢) ∈ {𝑠1, . . . , , 𝑠𝑚} for which the value
(𝑓(𝑢)−𝑎(𝑢))2 is the smallest possible. In other words, for each location 𝑢, as 𝑎(𝑢),
we take the value 𝑠𝑖 which is the closest to the original value 𝑓(𝑢). In other words:

� we select 𝑎(𝑢) = 𝑠1 if 𝑓(𝑢) 6
𝑠1 + 𝑠1

2
;

� we select 𝑎(𝑢) = 𝑠2 if
𝑠1 + 𝑠2

2
6 𝑓(𝑢) 6

𝑠2 + 𝑠3
2

;
� . . .
� for each 𝑖 = 2, . . . ,𝑚− 1, we select 𝑎(𝑢) = 𝑠𝑖 if

𝑠𝑖−1 + 𝑠𝑖
2

6 𝑓(𝑢) 6
𝑠𝑖 + 𝑠𝑖+1

2
;

� . . .
� finally, we select 𝑎(𝑢) = 𝑠𝑚 if

𝑠𝑚−1 + 𝑠𝑚
2

6 𝑓(𝑢).

We can repeat this procedure for different tuples 𝑠 = (𝑠1, . . . , 𝑠𝑚). For each such
tuple, we find the resulting mean square error∫︁

min
𝑖
(𝑓(𝑢)− 𝑠𝑖)

2 𝑑𝑢.

We then select a tuple 𝑠 for which this mean square error attains the smallest
possible value.

This immediately brings to mind tectonic plates. The above piece-wise de-
scription bring to mind the geophysical idea that the earth’s surface consists of
tectonic plates, solid bodies that move in relation to each other.

So, in the first approximation, our mathematical result leads to the very well-
known plate tectonics idea.

Our result goes beyond plate tectonics. In the first approximation, our result
simply leads to a well-known idea of plate tectonics. In this first approximation,
the whole plate moves as a whole, the shift is exactly the same on all locations
from this plate.
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In practice, the shift is somewhat different in different locations on the same
tectonic plate. To capture this difference and thus, provide a more accurate de-
scription of the corresponding geophysics, we therefore need to divide each affected
plate into two (or more) different parts, with different shifts in each part.

This idea has geophysical sense. It is known that the major earthquakes are
caused by the interaction of tectonic plates — that move relative to each other. As
a result, all major earthquakes — and the vast majority of smaller earthquakes –
happen at the boundaries between tectonic plates. Specifically, they happen at the
convergent boundaries, where the plates move towards each other, accumulating a
stress. This stress is released by an earthquake.

The above description is a first crude approximation to the corresponding geo-
physics, in which we can consider the whole plate as a solid body, in which all
parts move the same way. In reality, different parts of the plate may accumulate
the stress differently and move differently. As a result, some earthquakes only
involve a part of the boundary between the plates. Depending on the size of this
part, we can get earthquakes of different magnitudes.

Beyond piece-wise constant functions: geophysics-motivated idea. Solid bod-
ies do not just shift, they can also rotate. So, a natural idea is to consider not only
shifts, but also rotations of the parts of the plate.

In this case:
� instead of approximating the measured values 𝑓(𝑢) by a piece-wise constant

function,
� we approximate it by a piece-wise linear functions corresponding to shifts

and rotations of different parts of each tectonic plate.

This can help in earthquake studies. In view of the above, to get a better
understanding of the earthquake geophysics, it is important to analyze which parts
of the plate are involved in different earthquakes, which parts have accumulated
more stress and in which part, the stress has been released.

This idea is challenging. From the computational viewpoint, our idea is very
challenging:

� while we can relatively easily identify the boundary between the plates, where
the big motion occurs,

� it is much more challenging to identify the parts of the plate that are involved
in an earthquake.

The reason why this identification is not easy is because we are interested in
geophysical processes far away from the boundaries, where the earthquake-related
motion is much smaller in amplitude and thus, much more difficult to detect.

We all need to work together to overcome these challenges. As of now, what
we have are ideas and models.

Our preliminary results show that these ideas are promising, and we will con-
tinue working on them.

However, we think that it will be beneficial to publicize these ideas so that
others can implement them, use them, improve them if needed — and thus, help
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to get a better understanding of earthquake-related geophysics.
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Аннотация. Землетрясения могут быть разрушительными, поэтому важно полу-
чить хорошее представление о соответствующих геофизических процессах. Одна
из проблем в геофизике заключается в том, что мы не можем непосредственно из-
мерять соответствующие глубинные величины, мы должны полагаться на эксперт-
ные знания, знания, которые часто выражены неточными («нечёткими») словами
естественного языка. Чтобы формализовать эти знания, разумно использовать ме-
тоды, специально предназначенные для такой формализации, а именно, нечёткие
методы. В этой статье мы формулируем задачу оптимального представления та-
кого знания. Решая соответствующую задачу оптимизации, мы заключаем, что
оптимальное представление включает использование кусочно-постоянных функ-
ций. Для приложений геофизики это означает, что нам нужно выйти за пределы
тектонических плит, чтобы подробно рассмотреть части плит, которые движутся
во время землетрясения. Мы утверждаем, что такой анализ приведёт к лучшему
пониманию геофизики, связанной с землетрясением.
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