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Abstract. To gauge pavement conditions, researchers have come up with a
complex heuristic algorithm that combines several expert estimates of pave-
ment characteristics into a single index — which is well correlated with the
pavement’s durability and other physical characteristics. While empirically,
this algorithm works well, it lacks physical or mathematical justification be-
yond being a good fit for the available data. This lack of justification decreases
our confidence in the algorithm’s results — since it is known that often, empir-
ically successful heuristic algorithms need change when the conditions change.
To increase the practitioners’ confidence in the resulting pavement condition
estimates, it is therefore desirable to come up with a theoretical justification
for this algorithm. In this paper, we show that by using fuzzy techniques, it
is possible to come up with the desired justification.
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1. Formulation of the Problem

It is important to gauge pavement conditions. Most roads are heavily used.
Heavy traffic stresses the pavement. As a result, after several years, it is necessary
to maintain — or sometimes even repair — the roads.

Roads repairs are expensive. It is therefore important to adequately gauge
pavement conditions — so that we will be able to correctly decide which road
segments need maintenance or repair, and which can wait a few more years.

This is especially important since it is known that a proper maintenance can
make the road last much longer and thus, drastically decrease the need for expen-
sive road repairs.

How pavement conditions are gauged now. One of the most frequently used
technique for gauging pavement conditions is based on visual inspection of the
pavement.
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Visual inspection enables the inspectors to detect different types of problems —
known as distresses. We can have buckling, we can have potholes, we can have
cracks, etc. For each type of distress, inspectors:

� measure the area affected by this type of distress (or the length, for linear
distresses like linear cracks), and

� use the results of these measurement to evaluate the severity of the corre-
sponding distress.

The resulting data is then combined into a single pavement condition index
(PCI).

The combination rules used in the computation of the PCI are selected so as to
provide the most accurate prediction of the pavement durability. To improve the
predictive quality, more and more complex algorithms are used; see, e.g., the latest
international standard [1].

Problem. The problem is that the existing algorithm for gauging the pavement
condition is heuristic. This algorithm has been selected purely empirically, it does
not have any physical or mathematical justification — beyond being a good fit for
the available data.

In general, heuristic methods often work well, but they are usually less reliable
than theoretically justified algorithms – since they rely solely on the past experi-
ences and when the situations change, we may need to change the algorithms as
well. To increase the user’s confidence in the PCI algorithm, it is thus desirable to
come up with a theoretical justification for this algorithm.

What we do in this paper. In this paper, we provide the desired theoretical
justification for the current state-of-the-art complex heuristic algorithm for gauging
pavement conditions.

In this justification, we take into account the fact that this algorithm combines
— somewhat subjective — inspector observations, observations which include infor-
mation described not in numerical terms, but rather in terms of imprecise (“fuzzy’)
words from natural language, such as “high”, “low”, and “medium”. Thus, to
analyze this problem, it is reasonable to use techniques specifically designed for
translating such knowledge into precise numbers — namely, fuzzy techniques; see,
e.g., [3,8–10,12,13].

These techniques are what we will use in our justification.

2. The Current State-of-the-Art Algorithm for Gauging
Pavement Conditions: A Brief Reminder

What we start with. For each road segment, this algorithm starts with the
numbers 𝑥1, . . . , 𝑥𝑛 that describe the relative areas (or relative lengths) of the
distresses within this segment.

First step: a non-linear transformation. First, an appropriate non-linear trans-
formation 𝑓𝑖(𝑥𝑖) is applied to each value 𝑥𝑖, resulting in so-called deduct values
𝑠𝑖 = 𝑓𝑖(𝑥𝑖) ranging from 0 to 100 (or, equivalently, from 0 to 1). These non-
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linear transformations 𝑓𝑖(𝑥𝑖) are selected so that the resulting PCI have the largest
correlation with the pavement’s durability.

The deduct values are selected in such a way that larger values of the scores
correspond to more severe distresses:

� the value 100 (or 1) corresponds to the most sever distress, while
� the value 0 corresponds to the absence of distress.

Second step: sorting the deduct values. The deduct values corresponding to
distresses of different types are then sorted in the decreasing order, from the most
severe to the least severe: 𝑠(1) > 𝑠(2) > . . .

Third step: deciding how many deduct values to use. Based on the largest
deduct value, we then decide how many deduct values to use. This number 𝑚 of
used deduct values is found from a formula

𝑚 = 1 +
9

98
· (100− 𝑠(1)). (1)

We then use only the values 𝑠(1) > 𝑠(2) > . . . > 𝑠(𝑚).

Final step: combining deduct values. To combine the values 𝑠(1), . . . , 𝑠(𝑚), we
do the following:

� first, we compute the sum of the largest deduce value 𝑠(1) and of 𝑚− 1 small
values (equal to 2); we apply an appropriate non-linear transformation to
transform this sum into the interval [0, 100]; thus, we get the first combined
deduct value 𝑐1;

� then, we compute the sum of the two largest deduct values and of 𝑚 − 1 2s
— and apply a different non-linear transformation to the resulting sum; thus,
we get the second combined deduct value 𝑐2;

� after that, we compute the sum of 3 largest deduct values and 𝑚− 2 2s, and
apply a yet different non-linear transformation to the resulting sum; thus, we
get the third combined deduct value 𝑐3;

� then we repeat the same procedure for 4 largest deduct values, for 5 largest
deduct values, etc., until we are combine all 𝑚 deduct values.

As a result, we get 𝑚 combined deduct values 𝑐1, 𝑐2, , . . . , 𝑐𝑚.
After that, we take the largest of the resulting combined distress values

𝑐
def
= max

𝑖
𝑐𝑖. The PCI is simply 100 minus this largest value: PCI

def
= 100 − 𝑐.

The resulting combination of somewhat subjective estimates is indeed well-
correlated with physical properties. The algorithm has been selected so as to
provide the largest correlation with the pavement durability and other physical
characteristic. For example, it has been shown that PCI is strongly correlated with
the International Roughness Index that measures the passing vehicle’s vibrations
caused by the pavement’s imperfection; see, e.g., [8].

Towards reformulating the final step. Our ultimate goal is to decide when a
road segment needs maintenance or repair. This decision is made by comparing
the PCI estimated for this segment with a certain threshold 𝑡0. The condition that

100− 𝑐 > 𝑡0
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is equivalent to 𝑐 6 100 − 𝑡0. In its turn, the condition that 𝑐 = max
𝑖
𝑐𝑖 6 100 − 𝑡0

is equivalent to requiring that 𝑐𝑖 6 100− 𝑡0 for each 𝑖.
Each value 𝑐𝑖 is obtained from the sum 𝑠(1) + . . .+ 𝑠(𝑖) :
� by adding (𝑚− 𝑖) values of 2 and
� by applying an appropriate non-linear transformation to the resulting sum.
Thus, the condition 𝑐𝑖 6 100 − 𝑡0 is equivalent to requiring that the sum

𝑠(1) + . . . + 𝑠(𝑖) is greater than or equal to some threshold 𝑡𝑖. Thus, we can re-
formulate the final step as follows.

Reformulation of the final step. To decide whether the given road segment
needs repairs or maintenance, we check, for each 𝑖 from 1 to 𝑚, whether

𝑠(1) + 𝑠(2) + . . .+ 𝑠(𝑖) > 𝑡𝑖

for the corresponding threshold 𝑡𝑖.

What needs explanation. Natural questions are:
� Why should we use sum and not any other combination function?
� Why should we consider the sum of a few largest distress values and not of

all these values?
� Why should we consider several sums instead of just one?
� Where does the formula for the number 𝑚 of considered deduct values come

from?
There can be many other questions, since the above procedure, with its em-

phasis on sorting and maxima, does not look like any physical formula — physics
formulas very rarely use maxima.

3. Why Should We Use Sum and Not Any Other
Combination Function: An Explanation

Let us start analyzing the problem. The road segment is good if there are not
too many distresses of each type, i.e., if there are:

� few distresses of the first type and
� few distresses of the second type, etc.
In other words, the pavement is good if:
� the first value 𝑥1 is small and
� the second value 𝑥2 is small, etc.
This looks like a typical phrase to be analyzed by fuzzy techniques. Namely,

phrase is an “and”-combination of simpler phrases like “the value 𝑥1 is small”, “the
value 𝑥2 is small”, etc. To assign a numerical value to the validity of this phrase,
it makes sense:

� first, to estimate the degree to which each simple statement “𝑥𝑖 is small” is
true, and then

� combine these degree of confidence into a single degree.
This is exactly what we will do.



86 E. Rodriguez Velasquez et al. Fuzzy Ideas Explain...

We need different membership functions for different 𝑖. In accordance with
the usual fuzzy techniques, for each 𝑖 and for each 𝑥𝑖, we need to come with a
number 𝑑𝑖 describing to what extend the given value 𝑥𝑖 is small. Let us denote this
number by 𝜇𝑖(𝑥𝑖). In fuzzy techniques, the corresponding function 𝜇𝑖(𝑥𝑖) is known
as the membership function corresponding to the notion “small”.

In the traditional application of fuzzy techniques, when we have several oc-
currences of the same word like “small”, we use the same membership function.
However, most fuzzy textbooks emphasize that this is not necessarily the case: for
example, then transforming the size in meters into a number, “small” means two
different things when referring to cats or to people — a cat the size of a small
human being is, by cats’ standards, a giant.

This is exactly the case here. For example, if 𝑥1 describes the relative area of
severe distress, then 𝑥1 should really be small for this distress to be acceptable
and not requiring any maintenance. However, for low severity distress 𝑥2, even if
this distress takes a significant part of the road segment, by itself, this may not
necessarily trigger any need for maintenance. Thus, in our case, we need different
membership functions 𝜇𝑖(𝑥𝑖) for different 𝑖.

How to combine the degrees. In general, the problem of combining the degrees
is as follows:

� we know the degrees 𝑎 and 𝑏 to which statements 𝐴 and 𝐵 are true, and
� we want to use these values 𝑎 and 𝑏 to estimate the degree to which a

composite statement 𝐴&𝐵 is true.
In fuzzy logic, the corresponding estimate is called an “and”-operation (or, for

historical reasons, a t-norm); let us denote it by 𝑓&(𝑎, 𝑏).
In these terms, the desired degree of confidence that the road segment is good

is equal to
𝑓&(𝜇1(𝑥1), 𝜇2(𝑥2), . . .). (2)

Natural conditions on an “and”-operation. The “and”-operation should satisfy
several conditions. First, since 𝐴&𝐵 and 𝐵&𝐴 mean the same, it is reasonable
to expect that the corresponding estimates for their degrees should be the same,
i.e., that we should have 𝑓&(𝑎, 𝑏) = 𝑓&(𝑏, 𝑎) for all 𝑎 and 𝑏. In other words, the
“and”-operation should be commutative.

Similarly, since 𝐴&(𝐴&𝐶) and (𝐴&𝐵)&𝐶 means the same, we expect that
the estimates of the degree of these two statement should be the same, i.e., that
for all 𝑎, 𝑏, and 𝑐, we should have 𝑓&(𝑎, 𝑓&(𝑏, 𝑐)) = 𝑓&(𝑓&(𝑎, 𝑏), 𝑐). In other words,
an “and”-operation should be associative.

There are several other reasonable properties; see, e.g., [3, 8–10, 12, 13]. An
“and”-operation that satisfies all these properties is usually what is called a t-norm.

Structure of a generic t-norm. Some t-norms have the form

𝑓&(𝑎, 𝑏) = 𝑔−1(𝑔(𝑎) + 𝑔(𝑏)) (3)
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for some increasing function 𝑔(𝑧), where 𝑔−1(𝑧) indicates an inverse function, for
which 𝑔−1(𝑔(𝑧)) = 𝑧. Such t-norms are know as Archimedean.

For example, for the probability-inspired operation 𝑓&(𝑎, 𝑏) = 𝑎 · 𝑏, we get this
form with 𝑔(𝑧) = − ln(𝑧). A more traditional way of representing Archimedean
t-norms is by reducing them to the product, as 𝑓&(𝑎, 𝑏) = ℎ−1(ℎ(𝑎) · ℎ(𝑏)); this can
be reduced to the above sum-based representation if we take 𝑔(𝑎) = ℎ(− ln(𝑎)).

It is known (see, e.g., [5]) that for every t-norm 𝑓&(𝑎, 𝑏) and for every 𝜀 > 0,
there exists an Archimedean t-norm 𝑓 ′

&(𝑎, 𝑏) which is 𝜀-close to 𝑓&(𝑎, 𝑏), i.e., for
which

|𝑓 ′
&(𝑎, 𝑏)− 𝑓&(𝑎, 𝑏)| 6 𝜀

for all 𝑎 and 𝑏. Since the expert’s degrees of confidence are always approximate,
and 𝜀 can be arbitrary small, in practice, we can safely replace the original t-norm
with an 𝜀-close Archimedean one — as long as 𝜀 is small enough. Thus, without
losing generality, we can safely assume that the t-norm 𝑓&(𝑎, 𝑏) is Archimedean.

This explains why in gauging pavement conditions, we use sum. Indeed, the
degree of confidence that the road segment is good is determined by the formula
(2). As we have discussed, we can safely assume that the corresponding t-norm is
Archimedean, i.e., that it is described by the formula (3).

Substituting the expression (3) into the formula (2), we conclude that the
desired degree 𝑑 has the form 𝑑 = 𝑔−1(𝑔(𝜇1(𝑥))+𝑔(𝜇2(𝑥2))+ . . .), i.e., equivalently,

the form 𝑑 = 𝑔−1(𝑠), where 𝑠 = 𝑠1 + 𝑠2 + . . . , 𝑠𝑖 = 𝑓𝑖(𝑥𝑖), and 𝑓𝑖(𝑧)
def
= 𝑔(𝜇𝑖(𝑧)).

In particular, since the function 𝑔(𝑧) is increasing, the condition that road is
good enough, i.e., that 𝑑 > 𝑑0 for some threshold 𝑑0, can be equivalently reformu-

lated as 𝑠 > 𝑡0
def
= 𝑔(𝑑0). In other words, we get 𝑠1+𝑠2+ . . . > 𝑡0. This is exactly the

sum-based formula used to estimate the desired degree — which is thus explained
by fuzzy ideas.

4. Why Should We Consider the Sum of a Few Largest
Distress Values And Not of All These Values?

Analysis of the problem: analyzed road segments are reasonably good. The
whole procedure makes sense when roads are reasonably well maintained and are
in reasonable condition. If the road is in a clearly bad condition, there is no need
to accurately gauge its quality, we just need to repair it.

The need for an accurate estimate of the road’s quality occurs when we have
several segments of reasonably good quality, and we need to find the way to
maintain them and making them even better.

In such situations, most distress values 𝑥𝑖 are small. When a distress value is
very small, it does not affect the overall quality of a road segment.

Computational consequences of this analysis. Since small distress values do not
affect the quality of a road segment, taking them into account would be a waste of
computational resources.
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To avoid this waste, it makes sense to ignore these very small values, and
consider only a few largest distress values. This is exactly what is usually done:
instead of taking the sum of all the values 𝑠1 + 𝑠2 + . . ., we only consider the sum
of the 𝑚 largest values 𝑠(1)+ 𝑠(2)+ . . .+ 𝑠(𝑚). This is exactly what practitioners do.

5. Why Should We Consider Several Sums Instead of Just
One?

General idea. If, based on the largest distress, we know that the road segment
need repair or maintenance, there is no need to consider all other distresses. In
this case, taking other distresses into account would be a waste of computational
resources.

If, based on the first distress, we cannot make a definite conclusion, it is
reasonable to also consider the second distress, etc.

Thus, instead of always taking all 𝑚 distresses into account, it makes sense to
first check just the largest distress, then two largest, then three largest. etc.

This is exactly what is done in practice.

This is a fuzzy analog of lazy logical operations. In classical 2-valued logic, if
we want to find the truth value of a statement 𝐴&𝐵 and we know that 𝐴 is false,
there is no need to find the truth value of 𝐵 — we can already conclude that the
composite statement 𝐴&𝐵 is also false.

This simple observation saves us computation time. The corresponding opera-
tion is known as a lazy “and”. This is the most commonly used “and”-operation in
programming languages such as C or Java.

What we are describing here is the fuzzy analogue of such lazy “and”-
operations. Indeed, when the first values 𝑠(1), 𝑠(2), . . . are already large — cor-
responding to close-to-false (0) values of the corresponding degrees 𝜇𝑖(𝑥𝑖) – then
there is no need to compute any further terms, we know that the road segment
needs repair or maintenance.

6. Where Does the Formula for the Number 𝑚
of Considered Deduct Values Come From?

Analysis of the problem. Suppose that we know the largest distress 𝑠(1). Let us
denote, by 𝑆0, the overall distress level after which the road segment needs repairs
or maintenance.

Let us denote, by 𝑠0, the smallest value of an individual distress that is still
worth taking into account, so that values smaller than 𝑠0 can be safely set to
0. Then, if, in addition to the largest distress, we take into account 𝑚 − 1 other
non-zero distresses, we get the overall value 𝑠(1) + (𝑚 − 1) · 𝑠0. If this value is
already larger than or equal to the threshold 𝑆0, this means that there is no need
to consider any additional distresses — we already know that the road segment
needs repairs or maintenance.
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On the other hand, if among the 𝑚 largest distresses, the smallest is already
below 𝑠0 — and can hence be safely ignored – this means that all smaller distresses
can also be ignored. So, considering more than 𝑚 distresses also does not make
sense.

Thus, in all possible cases, the largest number of distresses to be continued is
the smallest 𝑚 for which 𝑠(1)+ 𝑠0 · (𝑚− 1) > 𝑆0. In terms of 𝑚, this inequality can
be reformulated in the equivalent form

𝑚 > 1 +
1

𝑠0
·
(︀
𝑆0 − 𝑠(1)

)︀
.

So, the smallest possible value 𝑚 that satisfies this property has the form

𝑚 = 1 +
1

𝑠0
·
(︀
𝑆0 − 𝑠(1)

)︀
. (4)

This analysis explains the formula for the number 𝑚 of considered deduct
values. Indeed, (4) is exactly the formula used to estimate how many deduct
values we need to take into account.
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7. Novák V., Perfilieva I., Močkoř J. Mathematical Principles of Fuzzy Logic. Kluwer,
Boston, Dordrecht, 1999.

8. Park K., Thomas N.E., Lee K.W. Applicability of the International Roughness Index
as a predictor of asphalt pavement condition // Journal of Transportation Engineering.
2007. V. 133, No. 12. P. 706–709.

9. Zadeh L.A. Fuzzy sets // Information and Control. 1965. V. 8. P. 338–353.



90 E. Rodriguez Velasquez et al. Fuzzy Ideas Explain...

НЕЧЁТКИЕ ИДЕИ ОБЪЯСНЯЮТ СЛОЖНЫЙ ЭВРИСТИЧЕСКИЙ
АЛГОРИТМ ДЛЯ ОПРЕДЕЛЕНИЯ УСЛОВИЙ ДОРОЖНОГО ПОКРЫТИЯ

Эдгар Даниэль Родригес Веласкес1,2

преподаватель, e-mail: @utep.edu
Карлос М. Чанг Альбитрес2

к.т.н, доцент, e-mail: vladik@utep.edu
В. Крейнович2

к.ф.-м.н., профессор, e-mail: vladik@utep.edu

1Университет Пиуры в Перу (UDEP)
2Техасский университет в Эль Пасо, США

Аннотация. Чтобы оценить условия дорожного покрытия, исследователи приду-
мали сложный эвристический алгоритм, который объединяет несколько эксперт-
ных оценок характеристик дорожного покрытия в единый индекс, хорошо корре-
лирующий с долговечностью покрытия и другими физическими характеристика-
ми. Эмпирически этот алгоритм работает хорошо, но ему не хватает физического
или математического обоснования, он просто хорошо подходит для доступных
данных. Это отсутствие обоснования уменьшает нашу уверенность в результатах
алгоритма — известно, что эмпирически успешные эвристические алгоритмы ча-
сто нуждаются в изменении, когда меняются условия. Поэтому, чтобы повысить
уверенность практиков в оценках состояния дорожного покрытия, желательно
придумать теоретическое обоснование этого алгоритма. В этой статье мы показы-
ваем, что, используя нечёткие методы, можно придумать желаемое обоснование.
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Дата поступления в редакцию: 30.06.2018


