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Abstract. In many practical applications, we are interested in the values of
the quantities w1, ...,y which are difficult (or even impossible) to measure
directly. A natural idea to estimate these values is to find easier-to-measure
related quantities z1,...,x, and to use the known relation to estimate the
desired values y;. Measurements come with uncertainty, and often, the only
thing we know about the actual value of each auxiliary quantity x; is that it
belongs to the interval [z;, Z;] = [2;— Ay, Z;+ 4], where Z; is the measurement
result, and A; is the upper bound on the absolute value of the measurement
error T; — x;. In such situations, instead of a single value of a tuple y =
(y1,---,Ym), We have a range of possible values. In this paper, we provide
calculus-based algorithms for computing this range.
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1. Formulation of the Problem

Need for indirect measurements. In many practical situations, we are interested

in the values of the quantities y,...,y, which are difficult — or even impossible

— to measure directly. Since we cannot measure these quantities directly, a natural

idea is to measure them indirectly (see, e.g., [6]), i.e.:

e to measure related quantities zy, ..., z, which are related to the desired quan-
tities y,; by known relations, and

e to use appropriate algorithms to find the values of the desired quantities:

h = fl(xl7"'7$n);

Yo = fo(@1, ..., Tn); (1)

Ym = fm(@1, ..., Tn).



Mathematical Structures and Modeling. 2018. N.2(46) 119

Comment. In the real world, the relations are usually smooth; see, e.g., [1,7].

Need to take into account measurement uncertainty. If we knew the exact
values x4, ..., x, of all the auxiliary quantities, then, by using the relations (1), we
would be able to find the exact values of all the desired quantities yy, ..., Ym.

In practice, however, measurements are never absolutely precise. The measure-
ment result z; is, in general, different from the actual (unknown) values of the
corresponding quantity. When we plus in values z; # z; into the formula (1), we,
in general, get the values y; = f;(z1,...,%,) which are, in general, different from
the desired values y;. How can we gauge the resulting uncertainty in y;?

Case of interval measurement uncertainty. In many practical situations,the

. . def ~ .
only information that we have about the measurement error Az; = z; — x; is

the upper bound A; provided by the manufacturer of the corresponding measuring
instrument. (If the manufacturer provide no such bound, then it is not a measuring
instrument, it is a device for producing wild guesses.)

In this case, once we know the measurement result z;, the only information we

have about the actual value z; is that it is somewhere on the interval [z;,Z;], where

7, €3 — Arand T, € F + A see, e.g., [2,4-6].

There is no a priori known relation between the values x;, so the set of all
possible values of z; should not depend on the values of all other quantities z;,
j # 1. Thus, the set of all possible values of the tuple z = (xy,...,x,) is the box

[z, T1] X ... X [2,,, 0. (2)

Resulting problem. Once we know that x belongs to the box (2), what are the
possible values of the tuple y = (y1,...,ym)? In mathematical terms, what is the
range of the box (2) under the mapping (1)?

In this paper, we describe calculus-based techniques for solving this problem.

2. Analysis of the Problem and the Resulting Algorithms

Simplest case when we have only one desired quantity y,: analysis of the
problem. Let us start with the simplest case, when we have only one desired quan-
tity y;. In this case, we are interested in the range of the function fi(xy,...,z,)
when each z; is in the corresponding interval [z;,7;]. For smooth (even for contin-
uous) functions, this range is connected and is, thus, an interval [val]’ where:

*y, is the smallest possible value of the function fi(z1,...,x,) on the given
box, and
e 7, is the largest possible value of the function fi(zq,...,z,) on the given
box.
For each wvariable x;, the maximum (or minimum) of the expression
y1 = fi(z, ..., x,) is attained:

e either at one of the endpoints of this interval, i.e., for x; =z, or x; = 7;,
e or inside the corresponding interval (z;,7;).
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According to calculus, if the maximum or minimum is attained inside an interval,

Lis equal to 0. So, for each i, it is sufficient

then the corresponding derivative 5
T

to consider three possible cases:
e the case when z; = z;

e the case when z; = 7;, and

e the case when % = 0.
8Ii

Thus, to find the minimum y,  and the maximum 7%, of the function
y1 = fi(x1,...,x,) over the box, it is sufficient to consider all possible combi-
nations of these 3 cases.

In other words, we arrive at the following algorithm.

Case when we have only one desired quantity y;: algorithm. Consider all
systems of equations, in which, for each i, we have one of the three alternatives:

x; = x;, r; = T;, and % = 0. There are 3" such systems.
4
For each of these systems, we find the corresponding values = = (z1,...,z,)
and compute the corresponding value y; = f(z1,...,2,). The largest of thus

computed values is ¥, the smallest is y .

Comment. This algorithm requires solving an exponential number of systems and
thus takes exponential time. This is, however, unavoidable, since it is known that
already for quadratic functions fi(z1,...,x,), the problem of computing the bounds
y and y is NP-hard; see, e.g., [3]. This means that, unless P=NP (which most
computer scientists believe to be impossible), super-polynomial (e.g., exponential)
computation time is unavoidable — at least for some inputs.

Exponential time does not mean that the algorithm is not practical — for rea-
sonably small n, solving 3™ system is quite reasonable. For example, for n = 10,
we need to solve less than 60,000 systems, it is a large number, but it is quite
doable. For n = 15, we need to solve about 5 million systems — still possible.

What we plan to do next. In the following subsections, we show how we
can extend this calculus-based approach to the general case, and thus reduce the
difficult-to-solve problem of finding the range to more well-studied problems of
solving systems of equations.

Case when the number m of desired quantities is equal to the number n of
auxiliary ones: analysis of the problem. To find the range means to find its
border. At almost all points on the border, there is — locally — at least one tangent
plane. A plane in an m-dimensional space has the form

m

ZCj'yi:C(].

J=1

Thus, at this border point y = (y1,...,¥m), the linear expression

m m

y:ch-yj:f(xl,...,a:n) CEch-fj(xl,...,a:n)

j=1 j=1
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attains its local maximum or local minimum.

Similarly to the previous case, this may mean that one of the inputs z; attains
its largest possible value Z; or its smallest possible value z; = z,. In this case, the
corresponding condition z; = z; or x; = T; determines the (n — 1)-dimensional set
— which could be part of the border.

[t may also means that the maximum or minimum of the linear function is
attained when all the values z; are inside the corresponding intervals. In this case,

we get
of

0@»

0

for all 7, i.e., we get

m afj_
ZC]" axz =0
7=1

for all 7.
In algebraic terms, the existence ol non-always-zero values c¢; that satisly the
above equality for all ¢ means that m = n gradient vectors

ofi Ok
oz, O,

that correspond to different j are linearly dependent. According to linear algebra,

this is equivalent to requiring that the determinant of the Jacobian matrix gfj
e
is equal to O:
df;
det || =] = 0. 3
ot 5 )

So, we arrive at the following algorithm.

Case when the number m of desired quantities is equal to the number n of
auxiliary ones: algorithm. To find the border of the desired range, for each ¢
from 1 to m = n, we form two systems of equations:

e the system (1) in which we substitute z; = z;, and

e the system (1) in which we substitute z; = 7;.

Each of these systems provides a set of co-dimension 1 that could potentially serve
as part of the border of the desired set.

To these possible border sets, we add the set corresponding to the equation (3).
This equation defined a set of co-dimension 1, and plugging this set into (1), we
can a y-set of co-dimension one — which can also be part of the border.

We know that the actual border can contain only segments of the above type,
so once we have computed all these segments, we can reconstruct the border.

General case: analysis of the problem. We have already considered the case
when m = n. There are two remaining cases: when n < m and when m < n.

When n < m, the set of all possible values of the tuple y is of of smaller
dimension than the m, so this set is its own boundary.
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Let us now consider the case when m < n. In this case, also, some linear
combination

m

flz, ..o xy) :ch~fj($1,...,xn)

J=1

attains its maximum or its minimum. Let v denote the number of inputs x; for
which at this maximum-or-minimum point, we have z; = z, or x; = 7;. For each
of the remaining n — v variables x;, we then have the equation

ch : 3;1» = 0. (4)
7j=1

This equality (4) must hold for all (n — v) values of i, so we must have (n — v)
equations.

We can select one of the values ¢; equal to 1, then the other m — 1 values of
c¢; can be determining if we consider the first m — 1 conditions (4) as a system of
linear equations with m — 1 unknowns. Substituting these values for ¢; into the
remaining n — v — (m — 1) equalities (4), we thus get n — v — (m — 1) equalities
that relate n — v unknowns.

In general, each additional equality imposed on elements of a set decreases its
dimension by 1. For example, in the 3-D space:

e the set of all the points that satisfy a certain equality is usually a 2-D surface,

e the set of points that satisfy two independent equalities is a 1-D line, etc.

In our case, the dimension of the set of all the (n—v)-dimensional tuples = that
satisfy all n —v — (m — 1) equalities is equal to the difference

m—v)—(n—v—(m—-1))=m—1.

The image of this (m — 1)-dimensional set under the transformation (1) is also
(m—1)-dimensional, so it forms a surface in the m-dimensional space of all possible

tuples y = (Y1, -, Ym)-
As a result, we get the following algorithm.

General case: algorithm. We consider all possible subsets I of the set {1,...,n}
of all indices of the inputs x;. For each such subset I of size v, we consider all 2¥
possible combinations of values z, and Z;.

For each such combination, we consider the system of equations (4) for all
i ¢ I. We can set up one of the values ¢; to 1 and the first m — 1 equations (4)
to describe ¢; as a function of zy,...,z,,. Substituting the resulting expressions
for ¢; in terms of z; into the remaining n — v — (m — 1) equalities (4), we get a
(m —1)-dimensional set of tuples x. Substituting this set of tuples into the formula
(1), we get a (m — 1)-dimensional set of y-tuples.

We thus get several (m — 1)-dimensional sets, and we know that the actual
border can only consist of the above fragments.
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Texacckuit ynusepcutet B b [laco, CIIA

AnHoTauus. Bo MHOrMX MPaKTHYECKHUX MPUJIOKEHHSAX HAC HHTEPECYIOT 3HaueHUs Be-
JIMUHH Y1, . - ., Ym, KOTOPHIE TPYAHO (MJIM JaXKe HEBO3MOXKHO) U3MEPUTD HEMOCPEICTBEH-
Ho. EcTecTBeHHas Wes OLEHUTh 5TH 3HAUEHHs — HaHTH OoJjiee JIETKHE /IS OLEHKH
BEJIUUMHEl 21,...,%T, M HCIO0Jb30BAaTh M3BECTHOE OTHOLIEHWE /I OLEHKH JKeJaeMBIX
3HaueHHH y;. VIaMepeHHs IPOXOAAT C HEONPeeNEHHOCTDIO, M YaCTO €HHCTBEHHOE, UTO
MBI 3HaeM 0 (PAaKTHYECKOM 3HaueHWH KaxkIOH BCIIOMOTaTesbHOM BEJHUYHUHBI T;, — 3TO
TO, UTO OHO MPHUHAMJIENKHUT HHTEPBANY [Z;,T;| = [T; — A, T; + A;], Toe T; — pesynabrar
u3MepeHus, a A; — BepxHsist FPAHUIA 110 aGCOJMIOTHOH BeJMUHHE OLIHOKH U3MEpPEHHs!
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Z; — x;. B TakUx CHUTyalUusix BMECTO OfHOrO 3HAYEHHs KOPTeXa § = (Y1,...,Ym) MBI
uMeeM JMala3oH BO3MOXKHbBIX 3HayeHUH. B 3To# cTaTbe Mbl NpejJ/araeM BHIYHUC/IHATEb-
Hble a/JrOPUTMBbl JJIS1 pacyéTa 3TOro AHanas3oHa.

KuroueBslie cioBa: 06pa6oTka NaHHBIX, HHTEPBaJbHAs HEONPeNeEHHOCTh, KOCBEHHbIE
U3MEepeHHUs], BEIYUCIICHHS.
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