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Abstract. In many practical applications, we are interested in the values of
the quantities 𝑦1, . . . , 𝑦𝑚 which are difficult (or even impossible) to measure
directly. A natural idea to estimate these values is to find easier-to-measure
related quantities 𝑥1, . . . , 𝑥𝑛 and to use the known relation to estimate the
desired values 𝑦𝑗 . Measurements come with uncertainty, and often, the only
thing we know about the actual value of each auxiliary quantity 𝑥𝑖 is that it
belongs to the interval [𝑥𝑖, 𝑥𝑖] = [̃︀𝑥𝑖−Δ𝑖, ̃︀𝑥𝑖+Δ𝑖], where ̃︀𝑥𝑖 is the measurement
result, and Δ𝑖 is the upper bound on the absolute value of the measurement
error ̃︀𝑥𝑖 − 𝑥𝑖. In such situations, instead of a single value of a tuple 𝑦 =

(𝑦1, . . . , 𝑦𝑚), we have a range of possible values. In this paper, we provide
calculus-based algorithms for computing this range.
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1. Formulation of the Problem

Need for indirect measurements. In many practical situations, we are interested
in the values of the quantities 𝑦1, . . . , 𝑦𝑚 which are difficult — or even impossible
— to measure directly. Since we cannot measure these quantities directly, a natural
idea is to measure them indirectly (see, e.g., [6]), i.e.:

� to measure related quantities 𝑥1, . . . , 𝑥𝑛 which are related to the desired quan-
tities 𝑦𝑗 by known relations, and

� to use appropriate algorithms to find the values of the desired quantities:

𝑦1 = 𝑓1(𝑥1, . . . , 𝑥𝑛);

𝑦2 = 𝑓2(𝑥1, . . . , 𝑥𝑛); (1)

. . .

𝑦𝑚 = 𝑓𝑚(𝑥1, . . . , 𝑥𝑛).
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Comment. In the real world, the relations are usually smooth; see, e.g., [1,7].

Need to take into account measurement uncertainty. If we knew the exact
values 𝑥1, . . . , 𝑥𝑛 of all the auxiliary quantities, then, by using the relations (1), we
would be able to find the exact values of all the desired quantities 𝑦1, . . . , 𝑦𝑚.

In practice, however, measurements are never absolutely precise. The measure-
ment result ̃︀𝑥𝑖 is, in general, different from the actual (unknown) values of the
corresponding quantity. When we plus in values ̃︀𝑥𝑖 ̸= 𝑥𝑖 into the formula (1), we,
in general, get the values ̃︀𝑦𝑗 = 𝑓𝑗(̃︀𝑥1, . . . , ̃︀𝑥𝑛) which are, in general, different from
the desired values 𝑦𝑗. How can we gauge the resulting uncertainty in 𝑦𝑗?

Case of interval measurement uncertainty. In many practical situations,the
only information that we have about the measurement error Δ𝑥𝑖

def
= ̃︀𝑥𝑖 − 𝑥𝑖 is

the upper bound Δ𝑖 provided by the manufacturer of the corresponding measuring
instrument. (If the manufacturer provide no such bound, then it is not a measuring
instrument, it is a device for producing wild guesses.)

In this case, once we know the measurement result ̃︀𝑥𝑖, the only information we
have about the actual value 𝑥𝑖 is that it is somewhere on the interval [𝑥𝑖, 𝑥𝑖], where

𝑥𝑖
def
= ̃︀𝑥𝑖 −Δ𝑖 and 𝑥𝑖

def
= ̃︀𝑥𝑖 +Δ𝑖; see, e.g., [2,4–6].

There is no a priori known relation between the values 𝑥𝑖, so the set of all
possible values of 𝑥𝑖 should not depend on the values of all other quantities 𝑥𝑗,
𝑗 ̸= 𝑖. Thus, the set of all possible values of the tuple 𝑥 = (𝑥1, . . . , 𝑥𝑛) is the box

[𝑥1, 𝑥1]× . . .× [𝑥𝑛, 𝑥𝑛]. (2)

Resulting problem. Once we know that 𝑥 belongs to the box (2), what are the
possible values of the tuple 𝑦 = (𝑦1, . . . , 𝑦𝑚)? In mathematical terms, what is the
range of the box (2) under the mapping (1)?

In this paper, we describe calculus-based techniques for solving this problem.

2. Analysis of the Problem and the Resulting Algorithms

Simplest case when we have only one desired quantity 𝑦1: analysis of the
problem. Let us start with the simplest case, when we have only one desired quan-
tity 𝑦1. In this case, we are interested in the range of the function 𝑓1(𝑥1, . . . , 𝑥𝑛)
when each 𝑥𝑖 is in the corresponding interval [𝑥𝑖, 𝑥𝑖]. For smooth (even for contin-
uous) functions, this range is connected and is, thus, an interval [𝑦

1
, 𝑦1], where:

� 𝑦
1

is the smallest possible value of the function 𝑓1(𝑥1, . . . , 𝑥𝑛) on the given
box, and

� 𝑦1 is the largest possible value of the function 𝑓1(𝑥1, . . . , 𝑥𝑛) on the given
box.

For each variable 𝑥𝑖, the maximum (or minimum) of the expression
𝑦1 = 𝑓1(𝑥, . . . , 𝑥𝑛) is attained:

� either at one of the endpoints of this interval, i.e., for 𝑥𝑖 = 𝑥𝑖 or 𝑥𝑖 = 𝑥𝑖,
� or inside the corresponding interval (𝑥𝑖, 𝑥𝑖).
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According to calculus, if the maximum or minimum is attained inside an interval,

then the corresponding derivative
𝜕𝑓1
𝜕𝑥𝑖

is equal to 0. So, for each 𝑖, it is sufficient

to consider three possible cases:
� the case when 𝑥𝑖 = 𝑥𝑖;
� the case when 𝑥𝑖 = 𝑥𝑖, and

� the case when
𝜕𝑓1
𝜕𝑥𝑖

= 0.

Thus, to find the minimum 𝑦
1

and the maximum 𝑦1 of the function
𝑦1 = 𝑓1(𝑥1, . . . , 𝑥𝑛) over the box, it is sufficient to consider all possible combi-
nations of these 3 cases.

In other words, we arrive at the following algorithm.

Case when we have only one desired quantity 𝑦1: algorithm. Consider all
systems of equations, in which, for each 𝑖, we have one of the three alternatives:

𝑥𝑖 = 𝑥𝑖, 𝑥𝑖 = 𝑥𝑖, and
𝜕𝑓1
𝜕𝑥𝑖

= 0. There are 3𝑛 such systems.

For each of these systems, we find the corresponding values 𝑥 = (𝑥1, . . . , 𝑥𝑛)
and compute the corresponding value 𝑦1 = 𝑓(𝑥1, . . . , 𝑥𝑛). The largest of thus
computed values is 𝑦1, the smallest is 𝑦

1
.

Comment. This algorithm requires solving an exponential number of systems and
thus takes exponential time. This is, however, unavoidable, since it is known that
already for quadratic functions 𝑓1(𝑥1, . . . , 𝑥𝑛), the problem of computing the bounds
𝑦 and 𝑦 is NP-hard; see, e.g., [3]. This means that, unless P=NP (which most
computer scientists believe to be impossible), super-polynomial (e.g., exponential)
computation time is unavoidable — at least for some inputs.

Exponential time does not mean that the algorithm is not practical — for rea-
sonably small 𝑛, solving 3𝑛 system is quite reasonable. For example, for 𝑛 = 10,
we need to solve less than 60,000 systems, it is a large number, but it is quite
doable. For 𝑛 = 15, we need to solve about 5 million systems — still possible.

What we plan to do next. In the following subsections, we show how we
can extend this calculus-based approach to the general case, and thus reduce the
difficult-to-solve problem of finding the range to more well-studied problems of
solving systems of equations.

Case when the number 𝑚 of desired quantities is equal to the number 𝑛 of
auxiliary ones: analysis of the problem. To find the range means to find its
border. At almost all points on the border, there is — locally — at least one tangent
plane. A plane in an 𝑚-dimensional space has the form

𝑚∑︁
𝑗=1

𝑐𝑗 · 𝑦𝑖 = 𝑐0.

Thus, at this border point 𝑦 = (𝑦1, . . . , 𝑦𝑚), the linear expression

𝑦 =
𝑚∑︁
𝑗=1

𝑐𝑗 · 𝑦𝑗 = 𝑓(𝑥1, . . . , 𝑥𝑛)
def
=

𝑚∑︁
𝑗=1

𝑐𝑗 · 𝑓𝑗(𝑥1, . . . , 𝑥𝑛)
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attains its local maximum or local minimum.
Similarly to the previous case, this may mean that one of the inputs 𝑥𝑖 attains

its largest possible value 𝑥𝑖 or its smallest possible value 𝑥𝑖 = 𝑥𝑖. In this case, the
corresponding condition 𝑥𝑖 = 𝑥𝑖 or 𝑥𝑖 = 𝑥𝑖 determines the (𝑛− 1)-dimensional set
— which could be part of the border.

It may also means that the maximum or minimum of the linear function is
attained when all the values 𝑥𝑖 are inside the corresponding intervals. In this case,
we get

𝜕𝑓

𝜕𝑥𝑖
= 0

for all 𝑖, i.e., we get
𝑚∑︁
𝑗=1

𝑐𝑗 ·
𝜕𝑓𝑗
𝜕𝑥𝑖

= 0

for all 𝑖.
In algebraic terms, the existence of non-always-zero values 𝑐𝑗 that satisfy the

above equality for all 𝑖 means that 𝑚 = 𝑛 gradient vectors(︂
𝜕𝑓𝑗
𝜕𝑥1

, . . . ,
𝜕𝑓𝑗
𝜕𝑥𝑛

)︂
that correspond to different 𝑗 are linearly dependent. According to linear algebra,

this is equivalent to requiring that the determinant of the Jacobian matrix

⃦⃦⃦⃦
𝜕𝑓𝑗
𝜕𝑥𝑖

⃦⃦⃦⃦
is equal to 0:

det

⃦⃦⃦⃦
𝜕𝑓𝑗
𝜕𝑥𝑖

⃦⃦⃦⃦
= 0. (3)

So, we arrive at the following algorithm.

Case when the number 𝑚 of desired quantities is equal to the number 𝑛 of
auxiliary ones: algorithm. To find the border of the desired range, for each 𝑖
from 1 to 𝑚 = 𝑛, we form two systems of equations:

� the system (1) in which we substitute 𝑥𝑖 = 𝑥𝑖, and
� the system (1) in which we substitute 𝑥𝑖 = 𝑥𝑖.

Each of these systems provides a set of co-dimension 1 that could potentially serve
as part of the border of the desired set.

To these possible border sets, we add the set corresponding to the equation (3).
This equation defined a set of co-dimension 1, and plugging this set into (1), we
can a 𝑦-set of co-dimension one – which can also be part of the border.

We know that the actual border can contain only segments of the above type,
so once we have computed all these segments, we can reconstruct the border.

General case: analysis of the problem. We have already considered the case
when 𝑚 = 𝑛. There are two remaining cases: when 𝑛 < 𝑚 and when 𝑚 < 𝑛.

When 𝑛 < 𝑚, the set of all possible values of the tuple 𝑦 is of of smaller
dimension than the 𝑚, so this set is its own boundary.
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Let us now consider the case when 𝑚 < 𝑛. In this case, also, some linear
combination

𝑓(𝑥1, . . . , 𝑥𝑛) =
𝑚∑︁
𝑗=1

𝑐𝑗 · 𝑓𝑗(𝑥1, . . . , 𝑥𝑛)

attains its maximum or its minimum. Let 𝑣 denote the number of inputs 𝑥𝑖 for
which at this maximum-or-minimum point, we have 𝑥𝑖 = 𝑥𝑖 or 𝑥𝑖 = 𝑥𝑖. For each
of the remaining 𝑛− 𝑣 variables 𝑥𝑖, we then have the equation

𝑚∑︁
𝑗=1

𝑐𝑗 ·
𝜕𝑓𝑗
𝜕𝑥𝑖

= 0. (4)

This equality (4) must hold for all (𝑛 − 𝑣) values of 𝑖, so we must have (𝑛 − 𝑣)
equations.

We can select one of the values 𝑐𝑗 equal to 1, then the other 𝑚 − 1 values of
𝑐𝑗 can be determining if we consider the first 𝑚 − 1 conditions (4) as a system of
linear equations with 𝑚 − 1 unknowns. Substituting these values for 𝑐𝑗 into the
remaining 𝑛 − 𝑣 − (𝑚 − 1) equalities (4), we thus get 𝑛 − 𝑣 − (𝑚 − 1) equalities
that relate 𝑛− 𝑣 unknowns.

In general, each additional equality imposed on elements of a set decreases its
dimension by 1. For example, in the 3-D space:

� the set of all the points that satisfy a certain equality is usually a 2-D surface,
� the set of points that satisfy two independent equalities is a 1-D line, etc.
In our case, the dimension of the set of all the (𝑛−𝑣)-dimensional tuples 𝑥 that

satisfy all 𝑛− 𝑣 − (𝑚− 1) equalities is equal to the difference

(𝑛− 𝑣)− (𝑛− 𝑣 − (𝑚− 1)) = 𝑚− 1.

The image of this (𝑚 − 1)-dimensional set under the transformation (1) is also
(𝑚−1)-dimensional, so it forms a surface in the 𝑚-dimensional space of all possible
tuples 𝑦 = (𝑦1, . . . , 𝑦𝑚).

As a result, we get the following algorithm.

General case: algorithm. We consider all possible subsets 𝐼 of the set {1, . . . , 𝑛}
of all indices of the inputs 𝑥𝑖. For each such subset 𝐼 of size 𝑣, we consider all 2𝑣

possible combinations of values 𝑥𝑖 and 𝑥𝑖.
For each such combination, we consider the system of equations (4) for all

𝑖 ̸∈ 𝐼. We can set up one of the values 𝑐𝑗 to 1 and the first 𝑚 − 1 equations (4)
to describe 𝑐𝑗 as a function of 𝑥1, . . . , 𝑥𝑚. Substituting the resulting expressions
for 𝑐𝑗 in terms of 𝑥𝑖 into the remaining 𝑛 − 𝑣 − (𝑚 − 1) equalities (4), we get a
(𝑚−1)-dimensional set of tuples 𝑥. Substituting this set of tuples into the formula
(1), we get a (𝑚− 1)-dimensional set of 𝑦-tuples.

We thus get several (𝑚 − 1)-dimensional sets, and we know that the actual
border can only consist of the above fragments.
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Аннотация. Во многих практических приложениях нас интересуют значения ве-
личин 𝑦1, . . . , 𝑦𝑚, которые трудно (или даже невозможно) измерить непосредствен-
но. Естественная идея оценить эти значения — найти более лёгкие для оценки
величины 𝑥1, . . . , 𝑥𝑛 и использовать известное отношение для оценки желаемых
значений 𝑦𝑗 . Измерения проходят с неопределённостью, и часто единственное, что
мы знаем о фактическом значении каждой вспомогательной величины 𝑥𝑖, — это
то, что оно принадлежит интервалу [𝑥𝑖, 𝑥𝑖] = [̃︀𝑥𝑖 −Δ𝑖, ̃︀𝑥𝑖 +Δ𝑖], где ̃︀𝑥𝑖 — результат
измерения, а Δ𝑖 — верхняя граница по абсолютной величине ошибки измерения
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̃︀𝑥𝑖 − 𝑥𝑖. В таких ситуациях вместо одного значения кортежа 𝑦 = (𝑦1, . . . , 𝑦𝑚) мы
имеем диапазон возможных значений. В этой статье мы предлагаем вычислитель-
ные алгоритмы для расчёта этого диапазона.
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