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Abstract. In this paper, after explaining the need to use tensors in computing,
we analyze the question of how to best store tensors in computer memory.
Somewhat surprisingly, with respect to a natural optimality criterion, the
standard way of storing tensors turns out to be one of the optimal ones.
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1. Why Tensors: A Reminder

Why tensors. One of the main problems of modern computing is that:
� we have to process large amounts of data;
� and therefore, long time is required to process this data.

A similar situation occurred in the 19 century physics:
� physicists had to process large amounts of data;
� and, because of the large amount of data, a long time is required to process

this data.
We will recall that in the 19 century, the problem was solved by using tensors. It
is therefore a natural idea to also use tensors to solve the problems with modern
computing.

Tensors in physics: a brief reminder. Let us recall how tensors helped the 19
century physics; see, e.g., [6]. Physics starts with measuring and describing the
values of different physical quantities. It goes on to equations which enable us to
predict the values of these quantities.

A measuring instrument usually returns a single numerical value. For some
physical quantities (like mass 𝑚), the single measured value is sufficient to describe
the quantity. For other quantities, we need several values. For example, we need
three components 𝐸𝑥, 𝐸𝑦, and 𝐸𝑧 to describe the electric field at a given point.
To describe the tension inside a solid body, we need even more values: we need 6
values 𝜎𝑖𝑗 = 𝜎𝑗𝑖 corresponding to different values 1 6 𝑖, 𝑗 6 3: 𝜎11, 𝜎22, 𝜎33, 𝜎12,
𝜎23, and 𝜎13.

The problem was that in the 19 century, physicists used a separate equation for
each component of the field. As a result, equations were cumbersome and difficult
to solve.
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The main idea of the tensor approach is to describe all the components of a
physical field as a single mathematical object:

� a vector 𝑎𝑖,
� or, more generally, a tensor 𝑎𝑖𝑗, 𝑎𝑖𝑗𝑘, . . .

As a result, we got simplified equations — and faster computations.
It is worth mentioning that originally, mostly vectors (rank-1 tensors) were

used. However, the 20 century physics has shown that higher-order matrices are
also useful. For example:

� matrices (rank-2 tensors) are actively used in quantum physics,
� higher-order tensors such as the rank-4 curvature tensor 𝑅𝑖𝑗𝑘𝑙 are actively

used in the General Relativity Theory.

From tensors in physics to computing with tensors. As we have mentioned
earlier, 19 century physics encountered a problem of too much data. To solve this
problem, tensors helped.

Modern computing suffers from a similar problem. A natural idea is that
tensors can help. Two examples justify our optimism:

� modern algorithms for fast multiplication of large matrices; and
� quantum computing.

2. Modern algorithm for multiplying large matrices

In many data processing algorithms, we need to multiply large-size matrices:⎛⎜⎜⎝
𝑎11 . . . 𝑎1𝑛

. . . . . . . . .

𝑎𝑛1 . . . 𝑎𝑛𝑛

⎞⎟⎟⎠
⎛⎜⎜⎝
𝑏11 . . . 𝑏1𝑛

. . . . . . . . .

𝑏𝑛1 . . . 𝑏𝑛𝑛

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝑐11 . . . 𝑐1𝑛

. . . . . . . . .

𝑐𝑛1 . . . 𝑐𝑛𝑛

⎞⎟⎟⎠ ; (1)

𝑐𝑖𝑗 = 𝑎𝑖1 · 𝑏1𝑗 + . . .+ 𝑎𝑖𝑘 · 𝑏𝑘𝑗 + . . .+ 𝑎𝑖𝑛 · 𝑏𝑛𝑗. (2)

There exist many efficient algorithms for matrix multiplication.
The problem is that for large matrix size 𝑛, there is no space for both 𝐴 and

𝐵 in the fast (cache) memory. As a result, the existing algorithms require lots
of time-consuming data transfers (“cache misses”) between different parts of the
memory.

An efficient solution to this problem is to represent each matrix as a matrix of
blocks; see, e.g., [2,10]:

𝐴 =

⎛⎜⎜⎝
𝐴11 . . . 𝐴1𝑚

. . . . . . . . .

𝐴𝑚1 . . . 𝐴𝑚𝑚

⎞⎟⎟⎠ , (3)

then
𝐶𝛼𝛽 = 𝐴𝛼1 ·𝐵1𝛽 + . . .+ 𝐴𝛼𝛾 ·𝐵𝛾𝛽 + . . .+ 𝐴𝛼𝑚 ·𝐵𝑚𝛽. (4)
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Comment. For general arguments about the need to use non-trivial representations
of 2-D (and multi-dimensional) objects in the computer memory, see, e.g., [21,22].

In the above idea,
� we start with a large matrix 𝐴 of elements 𝑎𝑖𝑗;
� we represent it as a matrix consisting of block sub-matrices 𝐴𝛼𝛽.

This idea has a natural tensor interpretation:
� each element of the original matrix is now represented as
� an (𝑥, 𝑦)-th element of a block 𝐴𝛼𝛽,
� i.e., as an element of a rank-4 tensor (𝐴𝛼𝛽)𝑥𝑦.

So, in this case, an increase in tensor rank improves efficiency.

Comment. Examples when an increase in tensor rank is beneficial are well known
in physics: e.g., a representation of a rank-1 vector as a rank-2 spinor works in
relativistic quantum physics [6].

Quantum computing as computing with tensors. Classical computation is based
on the idea of a bit: a system with two states 0 and 1. In quantum physics, due to
the superposition principle, we can have states

𝑐0 · |0⟩+ 𝑐1 · |1⟩ (5)

with complex values 𝑐0 and 𝑐1; such states are called quantum bits, or qubits, for
short.

The meaning of the coefficients 𝑐0 and 𝑐1 is that they describe the probabilities
to measure 0 and 1 in the given state: Prob(0) = |𝑐0|2 and Prob(1) = |𝑐1|2. Because
of this physical interpretations, the values 𝑐1 and 𝑐1 must satisfy the constraint
|𝑐0|2 + |𝑐1|2 = 1.

For an 𝑛-(qu)bit system, a general state has the form

𝑐0...00 · |0 . . . 00⟩+ 𝑐0...01 · |0 . . . 01⟩+ . . .+ 𝑐1...11 · |1 . . . 11⟩. (6)

From this description, one can see that each quantum state of an 𝑛-bit system is,
in effect, a tensor 𝑐𝑖1...𝑖𝑛 of rank 𝑛.

In these terms, the main advantage of quantum computing is that it can enable
us to store the entire tensor in only 𝑛 (qu)bits. This advantage explains the known
efficiency of quantum computing. For example:

� we can search in an unsorted list of 𝑛 elements in time
√
𝑛 — which is much

faster than the time 𝑛 which is needed on non-quantum computers [8,9,15];
� we can factor a large integer in time which does not exceed a polynomial of

the length of this integer — and thus, we can break most existing crypto-
graphic codes like widely used RSA codes which are based on the difficulty
of such a factorization on non-quantum computers [15,18,19].

Tensors to describe constraints. A general constraint between 𝑛 real-valued
quantities is a subset 𝑆 ⊆ 𝑅𝑛. A natural idea is to represent this subset block-by-
block — by enumerating sub-blocks that contain elements of 𝑆.

Each block 𝑏𝑖1...𝑖𝑛 can be described by 𝑛 indices 𝑖1, . . . , 𝑖𝑛. Thus, we can describe
a constraint by a boolean-valued tensor 𝑡𝑖1...𝑖𝑛 for which:
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∙ 𝑡𝑖1...𝑖𝑛 =“true” if 𝑏𝑖1...𝑖𝑛 ∩ 𝑆 ̸= ∅; and
∙ 𝑡𝑖1...𝑖𝑛 =“false” if 𝑏𝑖1...𝑖𝑛 ∩ 𝑆 = ∅.

Processing such constraint-related sets can also be naturally described in tensor
terms.

This representation speeds up computations; see, e.g., [3,4].

Computing with tensors can also help physics. So far, we have shown that
tensors can help computing. It is possible that the relation between tensors and
computing can also help physics.

As an example, let us consider Kaluza-Klein-type high-dimensional space-time
models of modern physics; see, e.g., [7, 11–13,16, 20]. Einstein’s original idea [5]
was to use “tensors” with integer or circular values to describe these models. From
the mathematical viewpoint, such “tensors” are unusual. However, in computer
terms, integer or circular data types are very natural: e.g., circular data type means
fixed point numbers in which the overflow bits are ignored. Actually, from the
computer viewpoint, integers and circular data are even more efficient to process
than standard real numbers.

Remaining open problem. One area where tensors naturally appear is an efficient
Taylor series approach to uncertainty propagation; see, e.g., [1,14,17]. Specifically,
the dependence of the result 𝑦 on the inputs 𝑥1, . . . , 𝑥𝑛 is approximated by the
Taylor series:

𝑦 = 𝑐0 +
𝑛∑︁

𝑖=1

𝑐𝑖 · 𝑥𝑖 +
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑐𝑖𝑗 · 𝑥𝑖 · 𝑥𝑗 + . . . (7)

The resulting tensors 𝑐𝑖1...𝑖𝑟 are symmetric:

𝑐𝑖1...𝑖𝑟 = 𝑐𝜋(𝑖1)...𝜋(𝑖𝑟) (8)

for each permutation 𝜋. As a result, the standard computer representation leads to
a 𝑟! duplication. An important problem is how to decrease this duplication.

3. How to Store Tensors in Computer Memory

Need to store values in computer memory. The computer memory is 1-D,
so whatever multi-dimensional object we describe, its components are stored se-
quentially. What is the best way to arrange 2-D and higher-dimensional data in a
computer memory?

Storing 2-D values in computer memory: towards formalization of the prob-
lem. Let us describe this problem in precise terms. We will start this description
with the simplest case of 2-D objects.

Storing 2-D object, with components 𝑎𝑖𝑗, 1 6 𝑖, 𝑗 6 𝑛, means assigning, to each
pair (𝑖, 𝑗), the cell number 𝑓(𝑖, 𝑗) in such a way that different pairs (𝑖, 𝑗) correspond
to different cell numbers 𝑓(𝑖, 𝑗).

So, to describe a storing arrangement, we must describe a function

𝑓 : {1, 2, . . . , 𝑛} × {1, 2, . . . , 𝑛} → 𝑁 (9)
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that maps each pair of integers 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛} into a natural number.

How to gauge the quality of a memory arrangement? motivations. It is
desirable to arrange the storage in such a way that neighboring elements of a 2-D
object are located in the memory as close to each other as possible. Neighboring
elements are elements (𝑖, 𝑗) and (𝑖′, 𝑗′) for which |𝑖− 𝑖′| 6 1 and |𝑗 − 𝑗′| 6 1. Thus,
we can gauge the quality of the memory arrangement by the largest distance
between the locations of neighboring points.

As a result, we arrive at the following numerical characteristics of the quality
of different memory arrangements 𝑓 .

How to gauge the quality of a memory arrangement? a formula. The quality
of a memory arrangement 𝑓 is described by the value

𝐶(𝑓)
def
= max{|𝑓(𝑖, 𝑗)− 𝑓(𝑖′, 𝑗′)| : |𝑖− 𝑖′| 6 1, |𝑗 − 𝑗′| 6 1}. (10)

The smaller this value, the better. Thus, we are interested in finding the arrange-
ment with the smallest possible value of the quantity 𝐶(𝑓).

Standard memory arrangement. Before we start analyzing possible memory
arrangements, let us recall the standard one. In the standard programming ar-
rangement of a 2-D array, the values are stored row by row:

� first, we have elements of the first row,

𝑓(1, 1) = 1, 𝑓(1, 2) = 2, . . . , 𝑓(1, 𝑛) = 𝑛; (11)

� then, we have elements of the second row,

𝑓(2, 1) = 𝑛+ 1, 𝑓(2, 2) = 𝑛+ 2, . . . , 𝑓(2, 𝑛) = 𝑛+ 𝑛 = 2𝑛; (12)

� . . .
� the elements of the 𝑘-th row are store at

𝑓(𝑘, 1) = (𝑘 − 1) · 𝑛+ 1, 𝑓(𝑘, 2) = (𝑘 − 1) · 𝑛+ 2, . . . ,

𝑓(𝑘, 𝑛) = (𝑘 − 1) · 𝑛+ 𝑛 = 𝑘 · 𝑛; (13)

� . . .
� finally, the elements of the last (𝑛-th) row are stored at locations

𝑓(𝑛, 1) = (𝑛− 1) · 𝑛+ 1, 𝑓(𝑛, 2) = (𝑛− 1) · 𝑛+ 2, . . . ,

𝑓(𝑛, 𝑛) = (𝑛− 1) · 𝑛+ 𝑛 = 𝑛2. (14)

Quality of the standard memory arrangement. What is the value of the quan-
tity 𝐶(𝑓) for the standard memory arrangement 𝑓? In other words, how far
away from each other can neighboring elements (𝑖, 𝑗) and (𝑖′, 𝑗′) be located in the
computer memory?
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If these two elements are in the same row, i.e., if 𝑖 = 𝑖′, then these neighboring
elements (𝑖, 𝑗) and (𝑖, 𝑗′), with |𝑗 − 𝑗′| = 1, are neighbors in the memory as well:

|𝑓(𝑖, 𝑗)− 𝑓(𝑖, 𝑗′)| = |𝑗 − 𝑗′| = 1. (15)

If these two elements are in the neighboring rows, |𝑖− 𝑖′| = 1 and |𝑗 − 𝑗′| 6 1,
then we get

𝑓(𝑖, 𝑗)− 𝑓(𝑖′, 𝑗′) = ((𝑖− 1) · 𝑛+ 𝑗)− ((𝑖′ − 1) · 𝑛+ 𝑗′) =

= (𝑖− 𝑖′) · 𝑛+ (𝑗 − 𝑗′). (16)

Here,
|𝑓(𝑖, 𝑗)− 𝑓(𝑖′, 𝑗′)| = |(𝑖− 𝑖′) · 𝑛+ (𝑗 − 𝑗′)| =

= |𝑛+ (𝑗 − 𝑗′)| 6 𝑛+ |𝑗 − 𝑗′| 6 𝑛+ 1. (17)

Thus, for the standard memory arrangement 𝑓 , the largest distance 𝐶(𝑓) between
the memory locations of neighboring values cannot exceed 𝑛 + 1. The distance
between the locations of the neighboring values can be actually equal to 𝑛 + 1:
e.g., for values (1, 1) and (2, 2). Thus, for the standard memory arrangement, we
have 𝐶(𝑓) = 𝑛+ 1.

A surprising result: the standard memory arrangement is optimal. Based on
the fact that other memory arrangements of 2-D objects are often beneficial, one
would expect these other memory arrangements be better than the standard one in
the sense of our criterion 𝐶(𝑓). Surprisingly, this is not the case: it turns out that
the standard memory arrangement is optimal.

To be more precise, we will prove that for every possible memory arrangement
𝐹 , we have 𝐶(𝑓) > 𝑛+1. Thus, the standard arrangement, for which 𝐶(𝑓) = 𝑛+1,
is indeed optimal.

Proof. Let us prove the inequality 𝐶(𝑓) > 𝑛 + 1. Let 𝑓 be an arbitrary memory
arrangement. This arrangement results in 𝑛2 locations 𝑓(𝑖, 𝑗) corresponding to 𝑛2

different pairs (𝑖, 𝑗).
Let us denote the smallest of these 𝑛2 values by 𝑓 , and the largest of these

values by 𝑓 :
𝑓

def
= min{𝑓(𝑖, 𝑗) : 1 6 𝑖, 𝑗 6 𝑛}, (18)

𝑓
def
= max{𝑓(𝑖, 𝑗) : 1 6 𝑖, 𝑗 6 𝑛}. (19)

Between 𝑓 and 𝑓 (including both), there are 𝑛2 different integers. For every 𝑎 < 𝑏,
the list 𝑎, 𝑎+1, . . . , 𝑏 contains 𝑏−𝑎+1 integers. Thus, we must have 𝑓−𝑓+1 > 𝑛2,
hence

𝑓 − 𝑓 > 𝑛2 − 1. (20)

Let (𝑖, 𝑗) denote the pair for which 𝑓(𝑖, 𝑗) = 𝑓 , and let (𝑖, 𝑗) denote the pair
for which 𝑓(𝑖, 𝑗) = 𝑓 . We can now design a sequence of pairs (𝑖𝑘, 𝑗𝑘) going from
(𝑖0, 𝑗0) = (𝑖, 𝑗) to (𝑖𝑁 , 𝑗𝑁) = (𝑖, 𝑗) in such a way that for every 𝑘, the pairs (𝑖𝑘, 𝑗𝑘)
and (𝑖𝑘+1, 𝑗𝑘+1) are neighbors.
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Indeed, if 𝑖 < 𝑖, we start with 𝑖0 = 𝑖, and then take 𝑖1 = 𝑖0 + 1, 𝑖2 = 𝑖0 + 2, etc.,
until we reach 𝑖 — after this, we continue to take 𝑖𝑘 = 𝑖.

If 𝑖 > 𝑖, we start with 𝑖0 = 𝑖, and then take 𝑖1 = 𝑖0 − 1, 𝑖2 = 𝑖0 − 2, etc., until
we reach 𝑖 — after this, we continue to take 𝑖𝑘 = 𝑖.

If 𝑖 = 𝑖, then we simply take 𝑖𝑘 = 𝑖 for all 𝑘.
Similarly, if 𝑗 < 𝑗, we start with 𝑗0 = 𝑗, and then take 𝑗1 = 𝑗0 + 1, 𝑗2 = 𝑗0 + 2,

etc., until we reach 𝑗 — after this, we continue to take 𝑗𝑘 = 𝑗.
If 𝑗 > 𝑗, we start with 𝑗0 = 𝑗, and then take 𝑗1 = 𝑗0 − 1, 𝑗2 = 𝑗0 − 2, etc., until

we reach 𝑗 — after this, we continue to take 𝑗𝑘 = 𝑗.
If 𝑗 = 𝑗, then we simply take 𝑗𝑘 = 𝑗 for all 𝑘.
At each step, each of the coordinates is changed by at most 1, so the pairs

(𝑖𝑘, 𝑗𝑘) and (𝑖𝑘+1, 𝑗𝑘+1) are indeed neighbors.
We need |𝑖− 𝑖|+1 steps to reach from 𝑖 to 𝑖, and we need |𝑗− 𝑗| steps to reach

from 𝑗 to 𝑗. Thus, overall, we need

𝑁 = max(|𝑖− 𝑖|, |𝑗 − 𝑗|) + 1 (21)

steps. For values from 1 to 𝑛, the largest possible difference |𝑗 − 𝑗| is equal to
𝑛− 1, hence 𝑁 6 𝑛.

Now, we have

𝑓(𝑖, 𝑗)− 𝑓(𝑖, 𝑗) = 𝑓(𝑖0, 𝑗0)− 𝑓(𝑖𝑁 , 𝑗𝑁) =

= (𝑓(𝑖0, 𝑗0)− 𝑓(𝑖1, 𝑗1)) + (𝑓(𝑖1, 𝑗1)− 𝑓(𝑖2, 𝑗2)) + . . .+

+(𝑓(𝑖𝑁−1, 𝑗𝑁−1)− 𝑓(𝑖𝑁 , 𝑗𝑁)). (22)

Thus,
|𝑓(𝑖, 𝑗)− 𝑓(𝑖, 𝑗)| 6

6 |𝑓(𝑖0, 𝑗0)− 𝑓(𝑖1, 𝑗1)|+ |𝑓(𝑖1, 𝑗1)− 𝑓(𝑖2, 𝑗2)|+ . . .+

+|𝑓(𝑖𝑁−1, 𝑗𝑁−1)− 𝑓(𝑖𝑁 , 𝑗𝑁)|. (23)

Since for each 𝑘, the pairs (𝑖𝑘, 𝑗𝑘) and (𝑖𝑘+1, 𝑗𝑘+1) are neighbors, we have

|𝑓((𝑖𝑘, 𝑗𝑘)− 𝑓(𝑖𝑘+1, 𝑗𝑘+1)| 6 𝐶(𝑓).

So, from (23), we conclude that

|𝑓(𝑖, 𝑗)− 𝑓(𝑖, 𝑗)| 6 (𝑁 − 1) · 𝐶(𝑓). (24)

Since 𝑁 6 𝑛, we thus have

|𝑓 − 𝑓 | = |𝑓(𝑖, 𝑗)− 𝑓(𝑖, 𝑗)| 6 (𝑛− 1) · 𝐶(𝑓). (25)

On the other hand, we know that 𝑛2 − 1 6 |𝑓 − 𝑓 |. Thus, we conclude that

𝑛2 − 1 6 (𝑛− 1) · 𝐶(𝑓), (26)
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and therefore, that

𝐶(𝑓) >
𝑛2 − 1

𝑛− 1
= 𝑛+ 1. (27)

The statement is proven.

The standard memory arrangement is not the only optimal one. The fact
that the standard memory arrangement turned out to have the optimal (smallest
possible) value of 𝐶(𝑓) may not sound so surprising if we realize that several
different memory arrangements have the exact same optimal value of 𝐶(𝑓).

One such arrangement is clear: instead of storing the values row by row, we
can store them column by column:

� first, we have elements of the first column,

𝑓(1, 1) = 1, 𝑓(2, 1) = 2, . . . , 𝑓(𝑛, 1) = 𝑛; (28)

� then, we have elements of the second column,

𝑓(1, 2) = 𝑛+ 1, 𝑓(2, 2) = 𝑛+ 2, . . . , 𝑓(𝑛, 2) = 2𝑛; (29)

� . . .
� the elements of the 𝑘-th column are store at

𝑓(1, 𝑘) = (𝑘 − 1) · 𝑛+ 1, 𝑓(2, 𝑘) = (𝑘 − 1) · 𝑛+ 2, . . . ,

𝑓(𝑛, 𝑘) = (𝑘 − 1) · 𝑛+ 𝑛 = 𝑘 · 𝑛; (30)

� . . .
� finally, the elements of the last (𝑛-th) column are stored at locations

𝑓(1, 𝑛) = (𝑛− 1) · 𝑛+ 1, 𝑓(2, 𝑛) = (𝑛− 1) · 𝑛+ 2, . . . ,

𝑓(𝑛, 𝑛) = (𝑛− 1) · 𝑛+ 𝑛 = 𝑛2. (31)

There are other examples as well: e.g., elements of a 2×2 matrix can be stored
in the order (1, 1), (1, 2), (2, 2), (2, 1) with the same value 𝐶(𝑓) = 𝑛+ 1 = 3 as for
row-by-row or column-by-column memory arrangements.

Multi-dimensional case. In the 𝑘-dimensional case, we need to assign location
𝑓(𝑖1, . . . , 𝑖𝑘) to tuples (𝑖1, . . . , 𝑖𝑘). It is also natural to gauge the quality of the
memory arrangement by the largest distance between the locations of neighboring
values, i.e., tuples (𝑖1, . . . , 𝑖𝑘) and (𝑖′1, . . . , 𝑖

′
𝑘) for which |𝑖𝑗 − 𝑖′𝑗| 6 1 for all 𝑗. The

quality of a memory arrangement 𝑓 can be thus naturally described by the value

𝐶(𝑓)
def
= max{|𝑓(𝑖1, . . . , 𝑖𝑘)− 𝑓(𝑖′1, . . . , 𝑖

′
𝑘)| :

|𝑖𝑗 − 𝑖′𝑗| 6 1 for all 𝑗 = 1, . . . , 𝑘}. (32)

In the standard computer arrangement, we store elements in lexicographic or-
der: i.e., (𝑖1, . . . , 𝑖𝑘) is placed before (𝑖′1, . . . , 𝑖

′
𝑘) if for the first differing coordinate

𝑖𝑗 ̸= 𝑖′𝑗, we have 𝑖𝑗 < 𝑖′𝑗. In other words, we first store values

(1, . . . , 1), . . . , (1, . . . , 𝑛), (33)
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then values
(1, . . . , 2, 1), . . . , (1, . . . , 2, 𝑛), (34)

etc. In this arrangement,
� the difference in the last coordinate 𝑖𝑘 − 𝑖′𝑘 = 1 leads to a difference of 1 in

memory locations;
� the difference in the next to last coordinate 𝑖𝑘−1−𝑖′𝑘−1 = 1 leads to a difference

of 𝑛 in memory locations,
� . . . ,
� the difference in the first coordinate 𝑖1 − 𝑖′1 leads to a difference of 𝑛𝑘−1 in

memory locations.
Thus, the difference in location of neighboring tuples cannot exceed

𝑛𝑘−1 + 𝑛𝑘−2 + . . .+ 𝑛+ 1.

This distance is attained, e.g., for the points (1, . . . , 1) and (2, . . . , 2). Thus, for the
standard memory arrangement 𝑓 , we have

𝐶(𝑓) = 𝑛𝑘−1 + 𝑛𝑘−2 + . . .+ 𝑛+ 1. (35)

Similarly to the 2-D case, we can prove that this memory arrangement is
optimal. Indeed, in this case, for the difference between the values

𝑓
def
= min{𝑓(𝑖1, . . . , 𝑖𝑘) : 1 6 𝑖𝑗 6 𝑛}, (36)

𝑓
def
= max{𝑓(𝑖1, . . . , 𝑖𝑘) : 1 6 𝑖𝑗 6 𝑛}, (37)

we have 𝑓 − 𝑓 > 𝑛𝑘 − 1. We can still move from the tuple (𝑖1, . . . , 𝑖𝑘) at which the
smallest value 𝑓 is attained to the tuple (𝑖1, . . . , 𝑖𝑘) at which the largest value 𝑓 is
attained in 6 𝑛 − 1 transitions from a tuple to a neighboring one. Thus, we can
conclude that

𝑛𝑘 − 1 6 (𝑛− 1) · 𝐶(𝑓), (38)

and therefore, that

𝐶(𝑓) >
𝑛𝑘 − 1

𝑛− 1
= 𝑛𝑘−1 + 𝑛𝑘−2 + . . .+ 𝑛+ 1. (39)

The optimality is proven.
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КАК ХРАНИТЬ ТЕНЗОРЫ В ПАМЯТИ КОМПЬЮТЕРА: ОБЗОР

М. Себерио
к.ф.-м.н., доцент, e-mail: mceberio@utep.edu

В. Крейнович
к.ф.-м.н., профессор, e-mail: vladik@utep.edu

Техасский университет в Эль Пасо, США

Аннотация. В этой статье, объяснив необходимость использования тензоров в
вычислениях, мы анализируем вопрос о том, как лучше хранить тензоры в памяти
компьютера. Оказывается, что относительно естественного критерия оптимально-
сти стандартный способ хранения тензоров оказывается одним из оптимальных.
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