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Abstract. In the first approximation, the Universe’s expansion is described by
the Hubble’s law v = H · R, according to which the relative speed v of two
objects in the expanding Universe grows linearly with the distance R between
them. This law can be derived from the Copernican principle, according to
which, cosmology-wise, there is no special location in the Universe, and thus,
the expanding Universe should look the same from every starting point. The
problem with the Hubble’s formula is that for large distance, it leads to non-
physical larger-than-speed-of-light velocities. Since the Universe’s expansion
is a consequence of Einstein’s General Relativity Theory (GRT), this problem
is usually handled by taking into account GRT’s curved character of space-
time. In this paper, we consider this problem from a purely kinematic view-
point. We show that if we take into account special-relativistic effects when
applying the Copernican principle, we get a modified version of the Hubble’s
law, in which all the velocities are physically meaningful – in the sense that
they never exceed the speed of light.
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1. Introduction

Universe’s expansion and Hubble’s law: reminder. Since the 1920s, it is
known that distant galaxies are moving away, with a speed v which is proportional
to the distance R: v = H · R. This empirical formula is known as the Hubble’s
law.

The empirical discovery of the Universe’s expansion turned out to be in perfect
accordance with Einstein’s General Relativity theory, according to which the Uni-
verse cannot be stationary: it either expands or retracts. Moreover, the expansion
predicted by General Relativity is in very good accordance with the Hubble’s law;
see, e.g., [1].

Hubble’s law follows from the Copernican principle. Later, it turned out
that the Hubble’s law can be derived from the so-called Copernican principle,
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according to which, from the cosmological viewpoint, there is no special location
in the Universe, and thus, the expanding Universe should look the same from
every starting point. This principle is named after Copernicus, which argued that,
contrary to the then-prevalent opinion, there is nothing special about the location
of Earth in space – and moreover, if we do not try to place Earth at the center
of the Universe, our description of celestial mechanics becomes much clearer and
simpler; see, e.g., [1].

The problem with the Hubble’s law. From the physical viewpoint, the Hubble’s
law has a problem: for large distances R, the corresponding velocity v exceeds
the speed of light c. This runs contrary to one of the main principles of special
relativity, according to which physical velocities cannot exceed c (see, e.g., [1]).

How this problem is solved now. Since the Universe’s expansion is a con-
sequence of Einstein’s General Relativity Theory (GRT), this problem is usually
handled by taking into account GRT’s curved character of space-time [1].

What we do in this paper. In this paper, we consider this problem from a purely
kinematic viewpoint.

We show that if we take into account special-relativistic effects when applying
the Copernican principle, we get a modified version of the Hubble’s law, in which
all the velocities are physically meaningful – in the sense that they never exceed
the speed of light.

The structure of the paper. We start, in Section 2, by reminding the readers
how, in the non-relativistic case, the Copernican principle leads to the Hubble’s
law. Then, in Section 3, we show that a special-relativistic modification of this
derivation leads to a physically meaningful special-relativistic modification of the
Hubble’s law.

2. How the Hubble’s Law Is Derived from the Copernican
Principle: A Brief Reminder

What we want to analyze. We want to find out how the relative velocity v of
two galaxies depends on the distance R between them.

We can safely assume that the dependence v(R) is continuous – even differen-
tiable.

Copernican principle: reminder. With respect to the Universe’s expansion, the
Copernican principle states that the expansion should look the same from every
starting point.

Consequences of this principle. The Copernican principle states that, for any
real number R > 0, if we take an object A at a distance R from the Earth, then,
from the viewpoint of this object, the Universe’s expansion looks the same as from
the Earth. In other words, an object B which is at a distance r from the object A
along the line Earth A (and which is thus at the distance R + r from the Earth)
moves with velocity v(r) relative to the object A.
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Relative to the Earth, the object A moves with the velocity v(R). When B
moves with velocity v(r) relative to the object A, and the object A moves relative
to the Earth with the velocity v(R), we can conclude, in the non-relativistic case,
that B moves with the velocity

v(R) + v(r)

relative to the Earth.
On the other hand, since the object B is located at the distance R+ r from the

Earth, it moves with the velocity

v(R + r)

relative to the Earth. By comparing the above two expressions for the B-relative-
to-Earth velocity, we conclude that

v(R + r) = v(R) + v(r) (1)

for all R > 0 and r > 0.

This formula implies the Hubble’s law. Indeed, by applying the formula (1)
multiple times, we conclude that

v(r1 + . . .+ rn) = v(r1) + . . .+ v(rn)

for all possible values r1, . . . , rn > 0. In particular, for every natural number n, for

r1 = . . . = rn =
1

n
, we have r1 + . . .+ rn = 1 and thus,

v(1) = v

(
1

n

)
+ ...+ v

(
1

n

)
︸ ︷︷ ︸

n times

.

So, v(1) = n · v
(

1

n

)
, hence v

(
1

n

)
=

1

n
· v(1).

Similarly, for any natural number m, for r1 = . . . = rm =
1

n
, we get

v
(m
n

)
= v

(
1

n

)
+ ...+ v

(
1

n

)
︸ ︷︷ ︸

m times

,

thus

v
(m
n

)
= m · v

(
1

n

)
=
m

n
· v(1).

So, for rational numbers R =
m

n
, we have v(R) = H · R, where we denoted

H
def
= v(1).
Since we assumed that the dependence v(R) is continuous, and every real

number can be approximated, with arbitrary accuracy, by rational numbers, we
conclude that v(R) = H · R for all real values R > 0. This is exactly the Hubble’s
law.
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3. What If We Take Special Relativity into Account

Let us recall the above situation. Let us consider the same situation: we have
the Earth, we have an object A at distance R from the Earth, and we have an
object B at the distance R+ r from the Earth along the same line as the object A.
Relative to the Earth:

� the object A moves with velocity v(R), and

� the object B moves with the velocity v(R + r).

The expansion should look the same from the viewpoint of the object A as it
looks from the viewpoint of the Earth.

Let us take relativistic effects into account. In the non-relativistic case, from
the viewpoint of the object A, the object B was at the distance r. However, in the
relativistic case, since the object A is moving with velocity v(R) relative to Earth,

the distance AB shrinks to r̃ = r ·

√
1−

(
v(R)

c

)2

; see, e.g., [1]. Therefore, from

the viewpoint of the object A, B moves with velocity v(r̃) relative to A.
We need to combine the A-relative-to-Earth and B-relative-to-A velocities into

the B-relative-to-Earth velocity. In the non-relativistic case, we simply added the
given velocities. In the relativistic case, we need to use the special-relativity

formula for such a combination: v =
v1 + v2

1 +
v1 · v2

c2

; see, e.g., [1]. In particular, for

v1 = v(R) and v2 = v(r̃), we conclude that

v(R + r) =
v(R) + v(r̃)

1 +
v(R) · v(r̃)

c2

=

v(R) + v

r ·√1−
(
v(R)

c

)2


1 +

v(R) · v

r ·√1−
(
v(R)

c

)2


c2

.

This formula can be simplified if we consider an auxiliary function u(R)
def
=

v(R)

c
instead of the desired function v(R). For this auxiliary function, the above formula
takes the following simplified form:

u(R + r) =
u(R) + u

(
r
√

1− (u(R))2
)

1 + u(R) · u
(
r
√

1− (u(R))2
) . (2)

What can we derive from this equation? Since we assumed that the dependence
v(R) is differentiable, we can differentiate both sides of the equality (2) by r and
take r = 0.



70 R. Martinez, V. Kreinovich. Does the Universe Really...

In the left-hand side, we get the derivative u′(R). In the right-hand side, we
can use the usual formula for the derivative of the ratio:

(f/g)′(r) =
f ′(r) · g(r)− f(r) · g′(r)

(g(r))2
,

thus

(f/g)′(0) =
f ′(0) · g(0)− f(0) · g′(0)

(g(0))2
,

For f(r) = u(R) + u
(
r
√

1− (u(R))2
)
, we have f(0) = v(R) and

f ′(r) = u′
(
r
√

1− (u(R))2
)
·
√

1− u(R)2.

So, for r = 0, we have

f ′(0) = u′(0) ·
√

1− (u(R))2.

Similarly, for g(r) = 1 + u(R) · u
(
r
√

1− (u(R))2
)
, we have g(0) = 1 and

g′(r) = u(R) · u′
(
r
√

1− (u(R))2
)
·
√

1− (u(R))2.

So, for r = 0, we have

g′(0) = u(R) · u′(0) ·
√

1− (u(R))2.

Let us denote u′(0) by h. Then, by equating the derivatives of both sides of the
formula (2), we conclude that

u′(R) =

[
h ·
√

1− (u(R))2
]
· 1− u(R) ·

[
u(R) · h ·

√
1− (u(R))2

]
12

=

=
[
h ·
√

1− (u(R))2
]
−
[
(u(R))2 · h ·

√
1− (u(R))2

]
,

hence
du

dR
= u′(R) = h ·

√
1− (u(R))2 ·

(
1− (u(R))2

)
.

By moving all the terms related to u to the left-hand side and all the terms related
to R to the right-hand side, we get

du√
1− u2 · (1− u2)

= h · dR.

By integrating both sides, we get∫
du√

1− u2 · (1− u2)
=

∫
h · dR = h ·R + C,
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for some integration constant C.
To find the expression for the integral in the left-hand side, we can substitute

u = sin(θ), then du = cos(θ) · dθ, and the integral takes the form∫
cos(θ) dθ√

1− sin2(θ) ·
(
1− sin2(θ)

) =

∫
cos(θ) dθ√

cos2(θ) · cos2(θ)
=

∫
dθ

cos2(θ)
.

This integral is known – it is equal to tan(θ), hence tan(θ) = h ·R+C. For R = 0,
we have v(0) = sin(θ), hence θ = 0, tan(θ) = 0, and thus, C = 0 and tan(θ) = h ·R.
Here,

tan(θ) =
sin(θ)

cos(θ)
=

sin(θ)√
1− sin2(θ)

=
u√

1− u2
,

so
u√

1− u2
= h ·R.

By squaring both sides and multiplying both sides by the resulting denominator,
we get

u2 = (1− u2) · h2 ·R2 = h2 ·R2 − u2 · h2 ·R2.

By moving the terms containing u2 to the left-hand side, we get

u2 · (1 + h2 ·R2) = h2 ·R2,

hence

u2 =
h2 ·R2

1 + h2 ·R2
,

therefore

u(R) =
h · r√

1 + h2 ·R2
.

So, for v(R) = c · u(R), we get

v(R) =
c · h · r√

1 + h2 ·R2
.

If we denote H def
= c · h, so that h =

H

c
, we get the following formula.

Resulting formula.

v(R) =
H ·R√

1 +

(
H ·R
c

)2
.

For this formula, as one can easily see, the velocity never exceeds the speed of
light.
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Аннотация. В первом приближении расширение Вселенной описывается законом
Хаббла v = H · R, согласно которому относительная скорость v двух объектов в
расширяющейся Вселенной растёт линейно с расстоянием R между ними. Этот
закон может быть получен из принципа Коперника, согласно которому космологи-
чески нет особого местоположения во Вселенной, и, следовательно, расширяюща-
яся Вселенная должна выглядеть одинаково с каждой отправной точки. Проблема
с формулой Хаббла заключается в том, что для больших расстояний это приводит
к нефизическим скоростям, превышающим скорость света. Поскольку расшире-
ние Вселенной является следствием общей теории относительности Эйнштейна
(ОТО), эту проблему обычно решают учитывая искривлённость пространства-
времени в ОТО. В этой статье мы рассматриваем эту проблему с чисто кине-
матической точки зрения. Мы показываем, что если учесть эффекты специальной
теории относительности при применении принципа Коперника, мы получим моди-
фицированную версию закона Хаббла, в которой все скорости физически значимы
— в том смысле, что они никогда не превышают скорость света.

Ключевые слова: космологическое расширение, принцип Коперника, специаль-

ная теория относительности, сверхсветовая скорость.
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