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Abstract. There exist techniques for decision making under specific types of
uncertainty, such as probabilistic, fuzzy, etc. Each of the corresponding ways
of describing uncertainty has its advantages and limitations. As a result, new
techniques for describing uncertainty appear all the time. Instead of trying to
extend the existing decision making idea to each of these new techniques one
by one, we attempt to develop a general approach that would cover all possible
uncertainty techniques.
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1. Formulation of the Problem

Need for decision making under uncertainty. The ultimate goal of science and
engineering is to make decisions, i.e., to select the most appropriate action.

Situations when we have full information about possible consequences of each
action are rare. Usually, there is some uncertainty. It is therefore important to
make decisions under uncertainty.

There are many different techniques for describing uncertainty. There are
many different techniques for describing uncertainty: probabilistic, fuzzy (see, e.g.,
[4,10,12]), possibilistic, interval-valued or, more generally, type-2 fuzzy (see, e.g.,
[6, 7]), complex-valued fuzzy [2], etc. For many of these techniques, there are
known methods for decision making under the corresponding uncertainty.

All the current techniques for describing uncertainty have their advantages
and their limitations. Because of the known limitations, new – more adequate
– techniques for describing uncertainty appear all the time. For each of these
techniques, we need to understand how to make decisions under the corresponding
uncertainty.

A problem that we try to solve in this paper. At present, this understanding
mostly comes technique-by-technique. A natural question is: can we develop a
general framework that would allow us to make decision under general uncertainty?
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The main objective of this paper is to develop such a general formalism.

Towards a precise formulation of the problem. Let us start with a monetary
problem. Suppose that we need to make a financial decision, such as investing a
given amount of money in a certain financial instrument (such as shares or bonds).

If we knew the exact consequences of this action, then we would know exactly
how much money we will have after a certain period of time. This happens, e.g., if
we simply place the given amount in a saving account with a known interest rate.

In most situations, however, we are uncertain of the possible financial con-
sequences of this action. In other words, for each investment scheme, there are
several possible consequences, with monetary amounts x1, . . . , xn. By using an
appropriate uncertainty technique, we can describe our degree of certainty that
the i-th alternative is possible by the corresponding value µi. Depending on the
formalism for describing uncertainty,

� a value µi can be a number – e.g., when we use probabilistic or fuzzy uncer-
tainty,

� it can be an interval – when we use interval-valued fuzzy,
� it can be a complex number – if we use complex-valued fuzzy,
� it can be a fuzzy set – if we use type-2 fuzzy techniques, etc.

For another investment scheme, we can have n′ different possible consequences,
with monetary values x′1, . . . , x

′
n′ and degrees of certainty µ′1, . . . , µ

′
n′.

To make a decision, we need to compare this investment, in particular, with
situations like placing money in a saving account, in which we simply get a fixed
amount of money after the same period of time.

� If this fixed amount of money is too small, then investing in an uncertain
financial instrument is clearly better.

� If this fixed amount of money is sufficiently large, then getting this fixed
amount of money is clearly better than investing in an uncertain financial
instrument.

There should be a threshold value of the fixed amount at which we go from the
instrument being preferable to a fixed amount being preferable. This threshold
fixed amount of money is thus equivalent, to the user, to the investment in an
uncertain instrument.

So, for each uncertain investment, in which we get:
� the amount x1 with degree of possibility µ1,
� the amount x2 with degree of possibility µ2,
� . . . ,
� amount xn with degree of possibility µn,

we have an equivalent amount of money. We will denote this equivalent amount of
money by f(x1, . . . , xn, µ1, . . . , µn).

Our goal is to find out how this equivalent amount of money depends on the
values xi and µi. Once we know the equivalent amount of money corresponding to
each uncertain investment, we will be able to select the best of the possible invest-
ments: namely, it is natural to select the investment for which the corresponding
equivalent amount of money is the largest possible.
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What about non-financial decision making situations? It is known (see, e.g.,
[3, 5, 8, 11]) that decisions of a rational person can be described as optimizing a
certain quantity called utility.

Thus, in general, we have the following problem: for each uncertain situation,
in which we get:

� utility x1 with degree of possibility µ1,
� utility x2 with degree of possibility µ2,
� . . . ,
� utility xn with degree of possibility µn,

we have an equivalent utility value. We will denote this equivalent utility value by
f(x1, . . . , xn, µ1, . . . , µn).

Our goal is thus to find out how this equivalent utility value depends on the
values xi and µi. Once we know the equivalent utility value corresponding to
each possible decision, we will be able to select the best of the possible decisions:
namely, it is natural to select the decision for which the corresponding equivalent
utility value is the largest possible.

Comment. In the following text, to make our thinking as understandable as pos-
sible, we will mostly talk about financial situations – since it is easier to think
about money than about abstract utilities. However, our reasoning is applicable to
utilities as well.

2. Analysis of the Problem

First reasonable assumption: additivity. We are interested in finding a function
f(x1, . . . , xn, µ1, . . . , µn) of 2n variables.

Suppose that the money that we get from the investment comes in two con-
sequent payments. In the i-th alternative, we first get the amount xi, and then –
almost immediately – we also get the amount yi.

We can consider the resulting investment in two different ways. First, we can
simply ignore the fact that the money comes in two installments, and just take
into account that in each alternative i, we get the amount xi + yi. This way, the
equivalent amount of money is equal to

f(x1 + y1, . . . , xn + yn, µ1, . . . , µn).

Alternatively, we can treat both installments separately:
� in the first installment, we get xi with uncertainty µi,
� in the second installment, we get yi with uncertainty µi.

Thus:
� the first installment is worth the amount f(x1, . . . , xn, µ1, . . . , µn), and
� the second installment is worth the amount f(y1, . . . , yn, µ1, . . . , µn).

The overall benefit is the sum of the amounts corresponding to both installments.
So, in this way of description, the overall money value of the original investment
is equal to the sum of the money values of the two installments:

f(x1, . . . , xn, µ1, . . . , µn) + f(y1, . . . , yn, µ1, . . . , µn).
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The equivalent benefit of the investment should not depend on the way we
compute it, so the two estimates should be equal:

f(x1 + y1, . . . , xn + yn, µ1, . . . , µn) =

= f(x1, . . . , xn, µ1, . . . , µn) + f(y1, . . . , yn, µ1, . . . , µn).

Functions satisfying this property are known as additive. Thus, we can say that
for each combination of values µ1, . . . , µn, the dependence on x1, . . . , xn is additive.

Second reasonable assumption: bounds. No matter what happens, we get at
least min

i
xi and at most max

i
xi. Thus, the equivalent benefit of an investment

cannot be smaller than min
i
xi and cannot be larger than max

i
xi:

min
i
xi 6 f(x1, . . . , xn, µ1, . . . , µn) 6 max

i
xi.

What we can conclude from the first two assumptions. It is known (see, e.g.,
[1]) that every bounded additive function is linear, i.e., that we have

f(x1, . . . , xn, µ1, . . . , µn) =
n∑
i=1

ci(µ1, . . . , µn) · xi.

So, instead of a function of 2n variables, we now have a simpler task for finding n
functions ci(µ1, . . . , µn) of n variables.

Nothing should depend on the ordering of the alternatives. The ordering of
the alternatives is arbitrary, so nothing should change if we change this ordering.
For example, if we swap the first and the second alternatives, then instead of

c1(µ1, µ2, . . .) · x1 + c2(µ1, µ2, . . .) · x2 + . . .

we should have
c2(µ2, µ1, . . .) · x1 + c1(µ2, µ1, . . .) · x2 + . . .

These two expressions must coincide, so the coefficients at x1 must coincide, and
we must have

c2(µ2, µ1, . . .) = c1(µ1, µ2, . . .).

In general, we should thus have

ci(µ1, . . . , µn) = c1(µi, µ1, . . . µi−1, µi+1, . . . , µn).

Thus, the above expression should have the form

f(x1, . . . , xn) =
n∑
i=1

c1(µi, µ1, . . . , µi−1, µi+1, . . . , µn) · xi.

Now, the problem is to find a single function c1(µ1, . . . , µn) of n variables.

Combining alternatives with the same outcomes. Based on the above formula,
the value c1(µ1, µ2, . . . , µn) corresponds to f(1, 0, . . . , 0), i.e., to a situation when
we have:
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� the value 1 with degree of possibility µ1,
� the value 0 with degree of possibility µ2,
� . . . ,
� the value 0 with degree of possibility µn.

In alternatives 2 through n, we have the same outcome 0, so it makes sense to
consider them as a single alternative. To find the degree of possibility of this
combined alternatives, we need to apply some “or”-operation ⊕ to the degrees of
possibility µ2, . . . , µn of individual alternatives.

For probabilities, this combination operation is simply the sum a ⊕ b = a + b,
for fuzzy, it is a t-conorm, etc. In general, the degree of certainty of the combined
alternative is equal to µ2 ⊕ . . .⊕ µn. Thus, the equivalent value of this situation is
equal to c1(µ1, µ2 ⊕ . . .⊕ µn). So, we have

c1(µ1, µ2, . . . , µn) = c1(µ1, µ2 ⊕ . . .⊕ µn),

and the above expression for the equivalent benefit takes the following form

f(x1, . . . , xn) =
n∑
i=1

c1(µi, µ1 ⊕ µi−1 ⊕ µi+1 ⊕ . . .⊕ µn) · xi.

Now, the problem is to find a single function c1(µ1, µ2) of two variables.
Let us simplify this problem even further.

Yet another reasonable requirement. Let us consider a situation in which we
have three alternatives, i.e., in which, we get:

� the amount x1 with degree of possibility µ1,
� the amount x2 with degree of possibility µ2, and
� the amount x3 with degree of possibility µ3.

According to the above formula, for this situation, the equivalent benefit is equal
to

c1(µ1, µ2 ⊕ µ3) · x1 + c1(µ2, µ1 ⊕ µ3) · x2 + c1(µ3, µ1 ⊕ µ2) · x2.

On the other hand, we can consider an auxiliary situation A in which we get:
� the amount x1 with degree of possibility µ1 and
� the amount x2 with the degree of possibility µ2.

This situation is equivalent to the amount

xA = c1(µ1, µ2) · x1 + c1(µ2, µ1) · x2,

and the degree of possibility of this auxiliary situation can be obtained by applying
the corresponding “or”-operation to the degrees µ1 and µ2 and is thus, equal to
µA = µ1 ⊕ µ2.

By replacing the first two alternatives in the original 3-alternative situation
with the equivalent alternative, we get the equivalent situation, in which we get:

� the value xA with degree of possibility µA and
� the value x3 with degree of possibility µ3.



Mathematical Structures and Modeling. 2017. N. 4(44) 115

For this equivalent situation, the equivalent amount is equal to

c1(µA, µ3) · xA + c1(µ3, µA) · x3.

Substituting the expressions for xA and µA into this formula, we conclude that the
equivalent amount is equal to

c1(µ1 ⊕ µ2, µ3) · (c1(µ1, µ2) · x1 + c1(µ2, µ2) · x2) + c1(µ3, µ1 ⊕ µ2) · x3 =

= c1(µ1 ⊕ µ2, µ3) · c1(µ1, µ2) · x1 + c1(µ1 ⊕ µ2, µ3) · c1(µ2, µ2) · x2+

+c1(µ3, µ1 ⊕ µ2) · x3.

We get two expressions for the same equivalent amount. These expressions
must coincide. This means, in particular, that the coefficients at x1 at both expres-
sions must coincide, i.e., that we should have

c1(µ1, µ2 ⊕ µ3) = c1(µ1 ⊕ µ2, µ3) · c1(µ1, µ2).

What can we extract from this requirement. Let us consider an auxiliary
function c(a, b)

def
= c1(a, b 	 a), where b 	 a is an inverse to ⊕, i.e., the value for

which a⊕ (b	 a) = b.
By definition of the new operation 	, we have

b = (a⊕ b)	 b.

Thus, we have
c(a, a⊕ b) = c1((a⊕ b)	 a) = c1(a, b).

In other words, for every a and b, we have

c1(a, b) = c(a, a⊕ b).

Substituting this expression for c1(a, b) into the above formula, we conclude that

c(µ1, µ1 ⊕ µ2 ⊕ µ3) = c(µ1 ⊕ µ2, µ1 ⊕ µ2 ⊕ µ3) · c1(µ1, µ1 ⊕ µ2).

The left-hand side depends only on two values x def
= µ1 and z def

= µ1 ⊕ u2 ⊕ µ3, and
does not depend on the value y def

= µ1 ⊕ µ3:

c(x, z) = c(y, z) · c(x, y).

Thus, if we fix some value y0, we conclude that

c(x, z) = g(z) · h(x),

where we denoted g(z)
def
= c(y0, z) and h(x)

def
= c(x, y0).
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Describing c1(a, b) in terms of the auxiliary function c(a, b), we can transform
the expression for the equivalent monetary value to

n∑
i=1

c(µi, µ1 ⊕ . . .⊕ µn) · xi.

Substituting the expression c(x, z) = g(z) ·h(x) into this formula, we conclude that
the equivalent monetary value takes the form

n∑
i=1

h(µi) · g · xi,

where we denoted g def
= g(µ1 ⊕ . . .⊕ µn).

For the case when x1 = x2 = . . . = xn, the boundedness requirement implies
that the equivalent value is equal to x1. Thus, we have

x1 =
n∑
i=1

h(µi) · g · x1.

Dividing both sides by x1, we conclude that

1 = g ·
n∑
i=1

h(µi)

and hence, that

g =
1

n∑
i=1

h(µi)
.

So, the equivalent monetary value is equal to the following expression:
n∑
i=1

h(µi) · xi
n∑
i=1

h(µi)
.

So, now we are down to a single unknown function h(µ).

3. Conclusions

General conclusion. We need to decide between several actions. For each action,
we know the possible outcomes x1, . . . , xn, and for each of these possible outcomes
i, we know the degree of possibility µi of this outcome. The above analysis shows
that the benefit of each action can then be described by the following formula

n∑
i=1

h(µi) · xi
n∑
i=1

h(µi)
,
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for an appropriate function h(µ).

How can we find the function h(µ)? If we have two alternatives with the same
outcome x1 = x2, then we can:

� either treat them separately, leading to the terms

h(µ1) · g(µ1 ⊕ µ2 ⊕ . . .) · x1 + h(µ2) · g(µ1 ⊕ µ2 ⊕ . . .) · x1 + . . .

� or treat them as a single alternative x1, with degree of possibility µ1 ⊕ µ2,
thus leading to the term

h(µ1 ⊕ µ2) · g(µ1 ⊕ µ2 ⊕ . . .) · x1.

These two expressions must coincide, so we must have

h(µ1 ⊕ µ2) = h(µ1) + h(µ2).

Let us show, on two specific cases, what this leads to.

Probabilistic case. In this case, the values µi are probabilities, and as we have
mentioned, we have µ1 ⊕ µ2 = µ1 + µ2. So, the above condition takes the form

h(µ1 + µ2) = h(µ1) + h(µ2).

Thus, in the probabilistic case, the function h(µ) must be additive.
The higher probability, the more importance should be given to the correspond-

ing alternative, so the function h(µ) should be monotonic. It is known (see, e.g.,
[1]) that every monotonic additive function is linear, so we must have h(µ) = c · µ
for some constant µ. Thus, the above formula for the equivalent amount takes the
form

n∑
i=1

c · µi · xi
n∑
i=1

c · µi
.

For probabilities,
n∑
i=1

µi = 1. So, dividing both the numerator and the denominator

by c, we conclude that the equivalent benefit has the form

n∑
i=1

µi · xi.

This is exactly the formula for the expected utility that appears when we consider
the decision of rational agents under probabilistic uncertainty [3,5,8,11].

Fuzzy case. In the fuzzy case, a⊕ b is a t-conorm. It is known (see, e.g., [9]) that
every t-conorm can be approximated, with arbitrary accuracy, by an Archimedean
t-conorm, i.e., by a function of the type G−1(G(a) +G(b)), where G(a) is a strictly
increasing continuous function and G−1 denotes the inverse function. Thus, from
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the practical viewpoint, we can safely assume that the actual t-conorm operation
a⊕ b is Archimedean:

a⊕ b = G−1(G(a) +G(b)).

In this case, the condition a⊕ b = c is equivalent to

G(a) +G(b) = G(c).

The requirement that
h(µ1 ⊕ µ2) = h(µ1) + h(µ2)

means that if a⊕ b = c, then

h(a) + h(b) = h(c).

In other words, if G(a) +G(b) = G(c), then

h(a) + h(b) = h(c).

If we denote A
def
= G(a), B def

= G(b), and C
def
= h(c), then a = G−1(A), b =

G−1(B), c = G−1(C), and the above requirement takes the following form: if
A+B = C, then

h(G−1(A)) + h(G−1(B)) = h(G−1(C)).

So, for the auxiliary function H(A)
def
= h(G−1(A)), we have A + B = C implying

that H(C) = H(A) + H(B), i.e., that H(A + B) = H(A) + H(B). The function
H(A) is monotonic and additive, hence H(A) = k · A for some constant k.

So, H(A) = h(G−1(A)) = k · A. Substituting A = G(a) into this formula, we
conclude that

h(G−1(G(a)) = h(a) = k ·G(a).

Thus, in the fuzzy case, the equivalent monetary value of each action is equal to

n∑
i=1

k ·G(µi) · xi
n∑
i=1

k ·G(µi)
.

Dividing both the numerator and the denominator by the constant k, we get the
final formula

n∑
i=1

G(µi) · xi
n∑
i=1

G(µi)
,

where G(a) is a “generating” function of the t-conorm, i.e., a function for which
the t-conorm has the form

G−1(G(a) +G(b)).
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Fuzzy case: example. For example, for the algebraic sum t-conorm

a⊕ b = a+ b− a · b,

we have
1− a⊕ b = (1− a) · (1− b)

and thus,
− ln(1− a⊕ b) = (− ln(1− a)) + (− ln(1− b)),

so we have G(a) = − ln(1− a).
Thus, the formula for the equivalent amount takes the form

n∑
i=1

ln(1− µi) · xi
n∑
i=1

ln(1− µi)
.
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Аннотация. Существуют методы принятия решений при некоторых типах неопре-
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