
Mathematical
Structures and Modeling

2017. N. 1(41). PP. 131–135
UDC 004.05

WHY PAIRWISE TESTING WORKS SO WELL: A POSSIBLE
THEORETICAL EXPLANATION OF AN EMPIRICAL

PHENOMENON

Francisco Zapata
Ph.D. (Phys.-Math.), e-mail: fazg74@gmail.com

Vladik Kreinovich
Ph.D. (Phys.-Math.), Professor, e-mail: vladik@utep.edu

University of Texas at El Paso, El Paso, Texas 79968, USA

Abstract. Some software defects can be detected only if we consider all
possible combinations of three, four, or more inputs. However, empirical data
shows that the overwhelming majority of software defects are detected during
pairwise testing, when we only test the software on combinations of pairs of
different inputs. In this paper, we provide a possible theoretical explanation
for the corresponding empirical data.

Keywords: software testing, pairwise testing, empirical data, theoretical ex-
planation.

1. Pairwise Testing: Empirical Data

Need for software testing. At present, many processes depend on computer
programs. In software dealing with health issues and with complex technology
like flying a plane or operating a nuclear power station, a program mistake can be
fatal and/or catastrophic. It is therefore important to make sure that the software
functions correctly.

In the ideal world, we should be able to prove program correctness, so that
we will be 100% sure that the program produces the correct results. However, at
present, such formal verification is only possible for rather simple programs. For
most programs, the only way to make sure that the program works correctly is to
test it with different inputs and different parameters.

Testing is not a perfect way to verify software. Most programs have many
possible inputs and many possible setting. For each of the inputs, we have a
large number of possible values. It is therefore not feasible to test all possible
combinations of inputs. So, we have to select which combinations we can feasibly
test.

Empirical data helps to decrease number of tests. Since there is usually a
large number of possible inputs, we cannot test all possible combinations of these
inputs, so we have to limit the number of inputs whose combinations we test.



132 F. Zapata and V. Kreinovich. Why Pairwise Testing Works So Well

The simplest approach is to consider each input one by one, and for each
input, to try different values of the corresponding quantity. This approach helps
find some program defects, but it misses many defects that can be hidden behind
if-statements with two or more conditions.

Let us present a simple example related to real-number computations following
the IEEE 754 standard. A program may contain a division x/y of two real numbers
x and y. If we fix a value y 6= 0 and consider all possible values x, the division
will be performed perfectly well. Similarly, if we fix a value x 6= 0 and consider all
possible values y, the division will be performed perfectly well. Even for y = 0, we
will get a legitimate infinite value. However, if both x and y are equal to 0, then –
unless we explicitly instructed a computer what to do in this case – we will have
a problem, since 0/0 is undefined.

A natural next step is to consider pairwise testing when we consider all possible
pairs of inputs, and for each pair, test different combinations of the corresponding
values. The following step is to consider all possible triples of inputs, etc.

At first glance, since, as we have mentioned, most program have a large number
of inputs, we should need to consider all possible combinations of such inputs to
find all the program’s errors. Interestingly, however, in practice, most program
errors can be detected already on the pairwise testing stage. Specifically, the
empirical data (see, e.g., [1]) shows that 84% of the defects are detected in pairwise
testing. Out of the remaining 16% of the defects:

� 11% are detected when we perform triple-wise testing, and

� 4% require trying combinations of 4 inputs.

Only the remaining (1%) of the defects require combinations of 5 or more inputs.
In other words, the vast majority of defects can be found by using pairwise testing.

Open problem. To the best of our knowledge, there is no convincing theoretical
explanation for the above statistics.

In this paper, we provide a possible theoretical explanation for the empirical
data – and thus, for the empirical efficiency of pairwise testing. The existence
of such a theoretical explanation increases our confidence that pairwise testing is
indeed a reasonable testing strategy.

2. Towards an Explanation

How testing is done: a general description. In principle, even for a single real-
valued variable, there is an astronomical number of possible values. It is therefore
not practically possible to test the program on all these values. Usually, there is a
certain time allocated for testing, and we only perform as many tests as we can fit
within this time.

Testing often starts with considering the values of one of the variables. This
way, we can catch some defects. However, it is well understood that if we only
change the value of one of the variables, then many defects will remain undetected.



Mathematical Structures and Modeling. 2017. N. 1(41) 133

So, the next step is usually to perform pairwise testing, i.e., for different pairs of
variables, to test the program on different combinations of their values.

It is also known that even pairwise testing leaves some defects undetected.
So, if we want a reliable software, we test it also on combinations of triples of
variables, etc. For each size of variables-to-change, be it 1 variable, 2 variables, 3
variables, or even more, potentially we can have many possible combinations, but
for each size, we are limited by time. In the first approximation, it is reasonable
to assume that each stage of this testing process takes approximately the same
time T :

� first, we spend time T testing the software on changed values of one of the
variables,

� then, we spend time T on pairwise testing,

� then, we (may) spend time T on triple-wise testing, etc.

From the general description of testing to numerical estimates. Let us see
how the above general description of the testing process translates into probabilities
of detecting a defect.

During each stage, we spend approximately the same time T on testing. Thus,
on each stage, we perform approximately the same number of tests, and so, we
have approximately the same probability of detecting any given defect on this
stage. Let us denote this probability by p.

After the first stage, we detect a defect with this probability p. With the
remaining probability 1− p, the defect will be undetected.

If we started with the second stage, then we would get the same probability
1− p of not detecting the defect on this stage. To estimate the probability that the
defect will not be detected after two consequent stages, we can take into account
that the tests performed on different stages are (or at least should be) independent.
Thus, the probability that we did not detect a defect after the first two stages is
equal to the product of the two probabilities:

� the probability 1− p that this detect was not detected on the first stage, and

� the probability 1− p that this defect was not detected on the second stage.

This probability is therefore equal to (1− p)2.
Similarly, the probability that the defect is not detected after three stages is

equal to (1 − p)3, the probability that this defect will not be detected after four
stages is (1 − p)4, and, in general, the probability that the defect will not be
detected in k stages is equal to (1− p)k.
Let us compare these numerical predictions with the observed values. Ac-
cording to the above estimations, the probability that we did not detect a defect
after the first two stages is equal to (1− p)2. Thus, the probability that the defect
was detected after the first two stages is equal to 1 − (1 − p)2. This probability
applies to all the defects, so the proportion of defects that are detected after the



134 F. Zapata and V. Kreinovich. Why Pairwise Testing Works So Well

first two stages is equal to the same number 1 − (1 − p)2. We know that empiri-
cally, this proportion is approximately equal to 84%, so 1− (1− p)2 ≈ 0.84, hence
(1− p)2 ≈ 1− 0.84 = 0.16, and 1− p ≈

√
0.16 = 0.4.

The probability that the defects were not detected after three stages is equal
to (1 − p)3. Thus, the proportion of the defects that were not detected after three
stages is also equal to (1 − p)3. So, the proportion of the defects that were not
detected after the two stages but that were detected after the third stage is equal
to the difference (1− p)2 − (1− p)3 between:

� the proportion (1 − p)2 of the defects that were not detected after the first
two stages, and

� the proportion (1 − p)3 of the defects that were not detected after the first
three stages.

For 1− p ≈ 0.4, this proportion is equal to 0.42 − 0.43 ≈ 16%− 6% = 10%, which
is very close to the observed amount of 11%.

Similarly, the probability that the defects were not detected after four stages is
equal to (1 − p)4. Thus, the proportion of the defects that were not detected after
four stages is also equal to (1− p)4. So, the proportion of the defects that were not
detected after the two stages but that were detected after the third stage is equal
to the difference (1− p)3 − (1− p)4 between:

� the proportion (1 − p)3 of the defects that were not detected after the first
three stages, and

� the proportion (1 − p)4 of the defects that were not detected after the first
four stages.

For 1−p ≈ 0.4, this proportion is equal to 0.43−0.44 ≈ 6.4%−2.6% = 3.8%, which
is very close to the observed amount of 4%.

So, our model indeed provides a very accurate description of the empirical data.

Acknowledgments

This work was supported in part by the National Science Foundation grants
HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and DUE-
0926721, and by an award “UTEP and Prudential Actuarial Science Academy and
Pipeline Initiative” from Prudential Foundation.

REFERENCES

1. Black R. Pragmatic Software Testing: Becoming an Effective and Efficient Test Profes-
sional. John Wiley & Sons, 2007.



Mathematical Structures and Modeling. 2017. N. 1(41) 135

ПОЧЕМУ ПАРНОЕ ТЕСТИРОВАНИЕ ТАК ХОРОШО РАБОТАЕТ:
ВОЗМОЖНОЕ ТЕОРЕТИЧЕСКОЕ ОБЪЯСНЕНИЕ ЭМПИРИЧЕСКОГО

ЯВЛЕНИЯ

Ф. Запата
к.ф.-м.н., e-mail: fazg74@gmail.com

В. Крейнович
к.ф.-м.н., профессор, e-mail: vladik@utep.edu

Техасский университет в Эль Пасо, США

Аннотация. Некоторые ошибки программного обеспечения могут быть обнаруже-
ны, только если мы рассмотрим все возможные комбинации из трёх, четырёх или
более входов. Однако, эмпирические данные показывают, что подавляющее боль-
шинство ошибок программного обеспечения обнаруживаются во время парного
тестирования, когда мы проверяем программное обеспечение только на парах раз-
личных входов. В этой статье мы приводим возможное теоретическое объяснение
соответствующих эмпирических данных.

Ключевые слова: тестирование программного обеспечения, парное тестирование,

эмпирические данные, теоретическое объяснение.

Дата поступления в редакцию: 22.09.16


