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Abstract. In physics, the number of observed spatial dimensions (three) is
usually taken as an empirical fact, without a deep theoretical explanation.
In this paper, we provide a possible simple geometric explanation for the
3-D character of the proper space. We also provide a simple geometric ex-
planation for the number of additional spatial dimensions that some physical
theories use. Specifically, it is known that for some physical quantities, the
3-D space model with point-wise particles leads to meaningless infinities. To
avoid these infinities, physicists have proposed that particles are more ade-
quately described not as 0-D points, but rather as 1-D strings or, more gen-
erally, as multi-D “M-branes”. In the corresponding M-theory, proper space
is 10-dimensional. We provide a possible geometric explanation for the 10-D
character of the corresponding space.
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1. Why 3-D Space?

Formulation of the problem. Empirically, our space is 3-dimensional: we need
three coordinates to uniquely determine each spatial location. Why three and not
two or five?

Modern physics mostly takes the number of dimensions for granted, as an
empirical fact, but it would nice to come up with a theoretical explanation for this
number. The main objective of this paper is to provide such an explanation.

Main idea and the resulting explanation. In classical physics, the world consists
of particles.

Particles interact: e.g., positively and negatively charged particles are attracted
to each other. However, this does not necessarily mean that we have to go beyond
the particles model: in modern physics, interaction between particles is explained
as an exchange of the auxiliary particles responsible for this interaction. For
example, electromagnetic forces are explained as an exchange of photons — quanta
of the electromagnetic field; see, e.g., [1].

With time, particles move in space; thus, each particle forms a 1-D trajectory
in space. Particles can collide; one particle can turn into several others, etc. Thus,
these trajectories can intersect. So, from the topological viewpoint, trajectories
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form a graph, with trajectories as edges and intersections of trajectories as ver-
tices.

From the physical viewpoint, the only meaningiul spatial locations are points
on this graph. However, from the mathematical and computational viewpoint,
analyzing graphs is difficult, it is easier to analyze multi-D manifolds. Thus, it is
convenient to embed the graph into a higher-D space. This is similar to the fact
that, from the computational viewpoint, it is easier to consider a solid body as a
continuous medium instead of explicitly taking into account its discrete atom-by-
atom character; see, e.g., [1].

What is the smallest dimension for which we can embed any graph into the
manifold of the corresponding dimension? Clearly, the corresponding space cannot
be 2-dimensional:

e while some graphs can be embedded into a plane,

e it is well known that not every graph can be embedded into a plane without
creating a non-physical additional intersection.

For example, a graph with 5 vertices all of which are connected to each other
cannot be thus embedded; see, e.g., [6].

However, it is also known that every finite graph can be embedded into a 3-D
space without creating unnecessary intersections. This may be an explanation of
why the usual physical space is 3-dimensional: this is a simplest model containing
the actual graph-like space.

2. Beyond Point Particle: Why 10-D Space?

Need to go beyond point particles. At first glance, the classical model of point-
wise particle is a good consistent description of the physical Universe. However,
a more detailed analysis shows that in this seemingly natural model, when we try
to estimate the values of some reasonable physical quantities, we get meaningless
infinities.

Indeed, let us compute the overall energy of the electric field of a single point-
wise charged particle with charge ¢q. The energy density p is known to be pro-
portional to the square of the electric field E: p = ¢ - E? for some constant c.

1
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Since the integrated function depends only on r, we can integrate over each sphere
of radius r and get dV =4 -7 -r?dr, thus
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. The overall energy ¢ can be obtained if we integrate this
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String etc.: a natural idea. Since point-wise 0-D particles lead to infinities, a
natural idea is to assume that particles are higher-dimensional objects: 1-D strings
or, more generally, multi-D “M-branes”. It turns out that in the corresponding
M-theory, we can avoid infinities if we consider a 10-D proper space (and 11-D
space-time); see, e.g., [2,8].

A possible simple geometric explanation of 10-D character of proper space.
How can we explain this 10-D character without involving complicated math? let
us go back to our original idea: that all we have in the world are particles.

The only difference now is that instead of 0-D particles that form 1-D trajecto-
ries as they move, now we have at least 1-D particles that, as they move, create
2-D “trajectories”.

From the topological viewpoint, the resulting trajectories are already continu-
ous, so there is no topological need to embed them into a higher-dimensional space.
However, from the computational viewpoint, it may be beneficial to consider such
an embedding if this will allow us to be able to deal with a simpler space — e.g.,
with a simple Euclidean space instead of the general curved Riemannian one.

[t is known — it was originally proven by the Nobelist John Nash - that every
Riemannian space can be embedded into an Euclidean space of higher dimension.
The bound on this dimension has been significantly improved since Nash’s original
result. The best estimate so far is that every Riemannian space of dimension n can
be embedded into an Euclidean space of dimension

n-(n+1)
2

see, e.g., [3-5,7]. In particular, for the case n = 2 of trajectories formed by 1-D

particles (strings), we get

2-(2+1)
2

Thus, we indeed get a possible simple geometric explanation of the 10-D character
of proper space in M-theories.

N = + n + max(n, 5);

N = + 2+ max(2,5) =3+2+5=10.

Acknowledgments

This work was supported in part by the National Science Foundation grants
HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and DUE-
0926721, and by an award “UTEP and Prudential Actuarial Science Academy and
Pipeline Initiative” from Prudential Foundation.

The author is thankful to Boguslaw Stec for valuable discussions.

REFERENCES

1. Feynman R., Leighton R., Sands M. The Feynman Lectures on Physics. Addison Wes-
ley, Boston, Massachusetts, 2005.



58 V. Kreinovich. Why 3-D Space? Why 10-D Space? A Possible Simple...

2.

3.

Greene B. The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for
the Ultimate Theory. W.W. Norton & Company, New York, 2003.

Giinther M. On the perturbation problem associated to isometric embeddings of Rie-
mannian manifolds // Ann. Global Anal. Geom. 1989. V. 7. P. 69-77.

. Giiunther M. Zum einbettungsatz von J. Nash // Math. Nachr. 1989. V. 144. P. 165-

187.

. Giinther M Isometric embeddings of Riemannian manifolds // Proceedings of the In-

ternational Congress of Mathematicians ICM’1990. Kyoto, Japan. P. 1137-1143.

. Trudeau R.J. Introduction to Graph Theory. Dover Publ., New York, 1993.
. Villani C. Théorémes de plogement(s) isométrique(s) de Nash // Journal de

Mathématiques des Eleves de I'Ecole Normal Supérieure de Lyon. March 2016.

. Witten E. Fivebranes and knots // Quantum Topology. 2012. V. 3, N. 1. P. 1-137.

MMOYEMY NPOCTPAHCTBO TPEXMEPHOE? IIOYEMY TECATUMEPHOE?
BO3MO2KHOE ITPOCTOE TEOMETPUYECKOE ObbICHEHHE

B. KpeiiHoBu4
K.(.-M.H., npodeccop, e-mail: vladik@utep.edu

Texacckuit ynusepcuret B b [laco, CIIA

AnHoramusa. B ¢usnke uncno HabsionaeMbIX MPOCTPAHCTBEHHBIX H3MepeHHH (TpH)
0OBIYHO MPUHUMAETCS] KaK SMIUPUYECKUH (PaKT, 6€3 riryboKoro TeopeTHYeckoro oobsc-
HeHUsi. B aToll cTaTtbe MBI IPUBOAUM BO3MOXKHOE MPOCTOE FeOMETPUUECKOe 0ObsICHEHHE
3-MepHOro xapakTepa 3TOro npoctpaHcTBa. Mbl Takke INpefjaraeM IpPOCTOe FeOMerT-
puueckoe 00bsCHeHHe pSfa JONONHUTE/bHBIX IPOCTPAHCTBEHHBIX U3MEPEHHH, KOTOpble
UCIIO/Ib3YIOT HEKOTOphle (PM3HyecKue TeOpHH. B 4acTHOCTH, H3BECTHO, YTO 1Jis HEKOTO-
PBIX (PU3UUYECKHUX BEJUYHH, MOJE/b 3-MEPHOTO TPOCTPAHCTBA C TOYEUHBIMH YaCTHLAMH
MIPUBOIUT K BO3HUKHOBEHHIO 6eCCMBIC/eHHBIX 6ecKkoHeuHOoCcTeH. UToObl n3bexaTh ITHUX
6ecKOHeYHOCTEH, (PU3UKH MPEATOIOXKHUIN, YTO YacTHLUBl Oosiee afeKBaTHO OMUCHIBATH
He Kak O-MepHble TOUKH, a Kak l-MepHble CTPyHBI WJH, B Gosee oOlieM IJaHe, Kak
MHoromepHble "M-6paHbl”. B cooTBeTcTBytOIIell M-TeopuH, COGCTBEHHO MPOCTPAHCTBO
spasietcst 10-mepHBIM. MEI npensiaraeM BO3MOXKHOE FeOMeTpPHUecKOe OOBSICHEHHe IS
10-MepHOro XapakTepa COOTBETCTBYIOLIETO MPOCTPAHCTBA.

KuroueBble ciaoBa: MpocTpaHCTBeHHOe U3MepeHHe, M-Teopusi.
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