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Abstract. To measure stiffness of the compacted pavement, practitioners use
the Compaction Meter Value (CMV); a ratio between the amplitude for the
first harmonic of the compactor’s acceleration and the amplitude corresponding
to the vibration frequency. Numerous experiments show that CMV is highly
correlated with the pavement stiffness, but as of now, there is no convincing
theoretical explanation for this correlation. In this paper, we provide a possible
theoretical explanation for the empirical correlation. This explanation also
explains why, the stiffer the material, the more higher-order harmonics we
observe.
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1. Compaction Meter Value (CMV) – An Empirical Measure
of Pavement Stiffness

Need to measure pavement stiffness. Road pavement must be stiff: the pavement
must remain largely unchanged when heavy vehicles pass over it.

To increase the pavement’s stiffness, pavement layers are usually compacted by
the rolling compactors. In the cities, only non-vibrating compactors are used, to
avoid human discomfort caused by vibration. However, in roads outside the city
limits, vibrating compactors are used, to make compaction more efficient. In this
paper, we will denote the vibration frequency by f .

Compaction is applied both to the soil and to the stiffer additional pavement
material that is usually placed on top of the original soil. To check whether we
need another round of compaction and/or another layer of additional material on
top, we need to measure the current pavement stiffness.

Ideally, we should measure stiffness as we compact. In principle, we can
measure stiffness after each compaction cycle, but it would be definitely more
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efficient to measure it during the compaction – this way we save time and we save
additional efforts needed for post-compaction measurements.

What we can rather easily measure during compaction is acceleration; it is
therefore desirable to estimate the pavement stiffness based on acceleration mea-
surements.

Compaction Meter Value (CMV). It turns out that reasonably good estimates for
stiffness can be obtained if we apply Fourier transform to the signal describing the
dependence of acceleration on time, and then evaluate Compaction Meter Value
(CMV), a ratio A2/A1 between the amplitudes corresponding to the frequencies 2f
and f . This measure was first introduced in the late 1970s [3,10,11].

Numerous experiments have confirmed that CMV is highly correlated with
more direct characteristics of stiffness such as different versions of elasticity mod-
ulus; see, e.g., [2,6,7,12,13].

CMV remains one of the main ways of estimating stiffness; see, e.g., [5].

Can we use other Fourier components? Since the use of the double-frequency
component turned out to be so successful, a natural idea is to try to use other
Fourier components.

It turns out that when the soil is soft (not yet stiff enough), then even the
double-frequency Fourier component is not visible above noise. As the pavement
becomes stiffer, we can clearly see first the first harmonic, then also higher har-
monics, i.e., harmonics corresponding to 3f , 4f , etc.

Remaining problem. While the relation between CMV and stiffness is an empiri-
cal fact, from the theoretical viewpoint it remains somewhat a mystery: to the best
of our knowledge, there is no theoretical explanation for this empirical dependence.

In this paper, we attempt to provide such a theoretical explanation.

2. A Possible Theoretical Explanation of an Empirical
Correlation Between CMV and Stiffness

Analysis of the problem: towards the corresponding equations. Let us start
our analysis with the extreme situation when there is no stiffness at all. Crudely
speaking, the complete absence of stiffness means that particles forming the soil
are completely independent from each one other: we can move some of them
without affecting others.

In this extreme case, the displacement xi of each particle i is determined by the
Newton’s equations

d2xi
dt2

=
1

mi

· Fi, (1)

where mi is the mass of the i-th particle and Fi is the force acting on this particle.
For a vibrating compactor, the force Fi is sinusoidal with frequency f . Thus,
the corresponding accelerations are also sinusoidal with this same frequency. In
this extreme case, after the Fourier transform, we will get only one component –
corresponding to the vibration frequency f .
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Stiffness k means that, in addition to the external force Fi, the acceleration of
each particle i is also influenced by the locations of other particles xj. For example,
if we move one of the particles forming the soil, other particle move as well so
that the distances between the particles remain largely the same. Thus, instead of
the simple Newton’s equations (1), we have more complicated equations

d2xi
dt2

=
1

mi

· Fi + fi(k, x1, . . . , xN), (2)

for some expression fi(k, x1, . . . , xN).
Displacements are usually small. We consider the case when stiffness is also

reasonably small. It is therefore reasonable to expand this expression in Taylor
series and keep only the first few terms in this expansion.

With respect to k, in the first approximation, we just keep linear terms. With
respect to xj, it is known that the corresponding processes are observably non-
linear (see, e.g., [1,4,9]) so we need to also take non-linear terms into account; the
simplest non-linear terms are the quadratic ones, so we end up with the following
approximate model:

d2xi
dt2

=
1

mi

· Fi + k ·
N∑
j=1

aij · xj + k ·
N∑
j=1

N∑
`=1

aij` · xj · xk. (3)

Solving the resulting equations. In general, the solution to the equations (3)
depends on the value k: xi(t) = xi(k, t).

When deriving the equations (3), we ignored terms which are quadratic (or of
higher order) in terms of k. It is therefore reasonable, when looking for solutions
to this equation, to also ignore terms which are quadratic (or of higher order) in
k, i.e., to take

xi(k, t) = x
(0)
i (t) + k · x(1)

i (t). (4)

If we plug in the formula (5) into the equation (3) and ignore terms which are
quadratic in k, then we end up with the equation

d2x
(0)
i

dt2
+ k · d

2x
(1)
i

dt2
=

1

mi

· Fi + k ·
N∑
j=1

aij · x(0)
j + k ·

N∑
j=1

N∑
`=1

aij` · x(0)
j · x

(0)
` . (5)

This formula should hold for all k, so:

� terms independent on k should be equal on both sides, and

� terms linear in k should be equal on both sides.

By equating terms in (5) that do not depend on k, we get the linear equation

d2x
(0)
i

dt2
=

1

mi

· Fi, (6)
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which, for the sinusoidal force Fi(t) = Ai · cos(ω · t + Φi), has a similar sinusoidal
form

x
(0)
i (t) = ai · cos(ω · t+ ϕi) (7)

for appropriate values ai and ϕi.
By equating terms linear in k on both sides of the equation (5), we conclude

that
d2x

(1)
i

dt2
=

N∑
j=1

aij · x(0)
j +

N∑
j=1

N∑
`=1

aij` · x(0)
j · x

(0)
` . (8)

For the sinusoidal expression (7) for x(0)
i :

� linear terms
N∑
j=1

aij · x(0)
j in the right-hand side are sinusoidal with the same

angular frequency ω (i.e., with frequency f), while

� quadratic terms
N∑
j=1

N∑̀
=1

aij` · x(0)
j · x

(0)
` are sinusoids with the double angular

frequency 2ω (i.e., with double frequency 2f).

Thus, the right-hand side of the equation (8) is the sum of two sinusoids corre-
sponding to frequencies f and 2f , and so,

d2xi
dt2

=
d2x

(0)
i

dt2
+ k · d

2x
(1)
i

dt2
= Ai · cos (ω · t+ Φi) +

+k ·
(
A

(1)
i · cos

(
ω · t+ Φ

(1)
i

)
+ A

(2)
i · cos

(
2ω · t+ Φ

(2)
i

))
. (9)

The measured acceleration a(t) is the acceleration of one of the points

a(t) =
d2xi0(t)

dt2
, thus the measured acceleration has the form

a(t) = A
(0)
i0
· cos

(
ω · t+ Φ

(0)
i0

)
+

+k ·
(
A

(1)
i0
· cos

(
ω · t+ Φ

(1)
i0

)
+ A

(2)
i0
· cos

(
2ω · t+ Φ

(2)
i0

))
. (10)

In this expression, we only have terms sinusoidal with frequency f and terms
sinusoidal with frequency 2f . Thus, in this approximation, the Fourier transform
of the acceleration consists of only two components:

� a component corresponding to the main frequency f (and the corresponding
angular frequency ω), and

� a component corresponding to the first harmonic 2f , with the angular fre-
quency 2ω.
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The amplitude A2 of the first harmonic 2ω is equal to A2 = k ·A(2)
i0

. The amplitude

A1 of the main frequency ω is equal to A1 = A
(1)
i0

+k·c for some constant c depending
on the relation between the phases. Thus, the ratio of these two amplitudes has
the form

A2

A1

=
k · A(2)

i0

A
(1)
i0

+ k · c
. (11)

In all the previous formulas, we ignored terms which are quadratic (or of higher
order) in terms of k. If we perform a similar simplification in the formula (11), we
conclude that

A2

A1

= k · C, (12)

where we denoted C def
=

A
(2)
i0

A
(1)
i0

. In other words, we conclude that the CMV ratio is,

in the first approximation, indeed proportional to stiffness.

Main conclusion. We have explained why, for reasonably small stiffness levels,
we can only see two Fourier components above the noise level: the component
corresponding to the vibrating frequency f and the component corresponding to
the first harmonic 2f .

We have also explained the empirical fact that the CMV – the ratio of the
amplitudes of the two harmonics – is proportional to the pavement stiffness.

Case of larger stiffness: analysis and corresponding additional conclusions.
When the stiffness k is sufficiently large, we can no longer ignore terms which are
quadratic or of higher order in terms of k. In general, the larger the stiffness level,
the more terms we need to take into account to get an accurate description of the
corresponding dynamics.

Also, when the stiffness k is small, then, due to the fact that the displacements
xi(t) are also reasonably small, the products of k and the terms which are, e.g.,
cubic in xj(t) can be safely ignored. However, when k is not very small, we need
to take these terms into account as well. Using the corresponding expansion of the
equations (3), and taking into account more terms in the expansion of xi(k, t) in k,
we end up with terms which are cubic (or higher order) in terms of the ω-sinusoids
x

(0)
i (t). These terms correspond to triple, quadruple, and higher frequencies 3f , 4f ,

etc.
This is exactly what we observe: the higher the stiffness, the more higher

order harmonics we see. Thus, this additional empirical fact is also theoretically
explained.
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ПОЧЕМУ ПОКАЗАТЕЛЬ СТЕПЕНИ УПЛОТНЕНИЯ ГРУНТА (CMV)
ЯВЛЯЕТСЯ ХОРОШЕЙ МЕРОЙ ЖЕСТКОСТИ ДОРОЖНОГО ПОКРЫТИЯ:

ВОЗМОЖНОЕ ТЕОРЕТИЧЕСКОЕ ОБЪЯСНЕНИЕ
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Аннотация. Для измерения жёсткости уплотнённого дорожного покрытия прак-
тики используют показатель степени уплотнения грунта (CMV) — это отношение
амплитуды первой гармоники ускорения уплотнителя к амплитуде, соответству-
ющей частоте вибрации. Многочисленные эксперименты показывают, что CMV
сильно коррелирует с жёсткостью дорожного покрытия, но на данный момент не
существует каких-либо убедительных теоретических объяснений этой корреля-
ции. В данной статье мы приводим возможные теоретические объяснения этой
эмпирической корреляции. Это объяснение также показывает, почему для более
жёсткого материала мы наблюдаем больше гармоник высшего порядка.

Ключевые слова: дорожное покрытие, уплотнение, Compaction Meter Value

(CMV).
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