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Abstract. One of the main solutions to a conflict situation is the von
Neumann-Morgenstern (vN-M) solution. Intuitively, it is a set of outcomes
describing a ”social norm”, so that (1) if someone tries to propose an outcome
outside this set, then we can force this outcome back into this set, and (2) once
an outcome within this set is selected, no coalition is interested in switching
to a different socially acceptable outcome. There are two main problems with
this approach: some situations lack such a solution, and no general algorithm
is known for producing this solutions when it exists. In this paper, we show
that, if we take into account that in real-life situations, the outcomes are
known only with some accuracy, then it becomes possible to algorithmically
find the corresponding ”approximate” vN-M solutions.
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Cooperative games and von Neumann-Morgenstern solution. Situations when
all participants collaborate with each other is known as a cooperative game. One

way to describe a cooperative game is to assign, to every subset S ⊆ N
def
=

= {1, . . . , n} of the set of all the participants, the value v(S) that describes what
players from S can gain if they collaborate between themselves only. Such subsets
S are called coalitions.

We consider cooperative situations, so if two disjoint coalitions S and S ′ collab-
orate, they should be able to gain not less than they would get on their own, i.e.,
we should have v(S ∪ S ′) > v(S) + v(S ′).

It always makes sense to consider only gains due to collaboration, so if v({i}) 6=
6= 0, then we can take v′(S) = v(S)−

∑
i∈S

v({i}) for which v′({i}) = 0.

Definition 1. Let n be a positive integer. By a cooperative game, we mean a
function that assigns, to each subset S ⊆ N

def
= {1, . . . , n}, a non-negative number

v(S) so that

� v({i}) = 0 for all i, and

� when S ∩ S ′ = ∅, then v(S ∪ S ′) > v(S) + v(S ′).
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Since everyone is collaborating, the participants together get the value v(N).
The question is: what is a fair way to divide this total amount v(N) between
n participants, i.e., how to allocate non-negative amounts x1, . . . , xn for which
n∑
i=1

xi = v(N). Such allocations are known as imputations.

Definition 2. By an imputation, we mean a tuple (x1, . . . , xn) of non-negative

numbers for which
n∑
i=1

xi = v(N).

In their original book [6] that started game theory, John von Neumann and
Oscar Morgenstern considered the following notion of dominance between impu-
tations x � y. We say that an imputation x dominates an imputation y if there
exists a coalition S for which each player from S gets more money in x than in y
(xi > yi) and which is “reachable” for S – i.e., for which

∑
i∈S

xi 6 v(S).

The condition
∑
i∈S

xi 6 v(S) means that the coalition S can force a switch from y

to x, and the condition xi > yi means that this switch is beneficial for all members
of the coalition S. So, if both imputations x and y are possible, S will force a
switch from x to y.

Definition 3. We say that an imputation x dominates an imputation y (and
denote it by x � y) if xi > yi for all i ∈ S and

∑
i∈S

xi 6 v(S).

At first glance, it may seem reasonable to consider the set of all non-dominated
imputations as a solution; this set is known as a core [3, 6]. Alas, often, this set is
empty: we may have both x ≺ y (because of one coalition S) and y ≺ x (because
of another coalition S ′). In such games, if we allow all possible imputations, we
can potentially switch infinitely many times, never reaching an equilibrium.

To avoid such situations, von Neumann and Morgenstern suggested that we
adopt some social norms that would limit the set of possible imputations in such
a way that no two imputations within this norm dominate each other. The social
norm has to be enforceable meaning that if someone proposes an imputation which
is outside this norm, there should be a coalition that forces a switch to a solution
within the norm. The resulting definition is known as a von Neumann-Morgenstern
solution (or NM-solution, for short).

Definition 4. A set C of imputations is called a von Neumann-Morgenstern
solution if it satisfies the following two properties:

� if x, y ∈ C, then x 6� y;

� if y 6∈ C, then there exists an x ∈ C for which x � y.

In this case, our decision making consists of two stages:

� first, all participants agree on an appropriate “social norm”, i.e., on an appro-
priate set of imputations C within which they search for an imputation;
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� then, once the set C is selected, the participants select an imputation x from
this set.

The two conditions from Definition 4 guarantee that:

� if someone tries to violate an agreement and propose an imputation y outside
the set C corresponding to the social norm, then we can force it back into C;

� second, that once an imputation x is selected, no coalition is interested in
switching to a different socially acceptable imputation y.

Our goal is to compute the list of all possible social norms C (or at least compute
one social norm C).

Computing von Neumann-Morgenstern solution is a challenge. Originally,
von Neumann and Morgenstern proposed their solution as the main solution con-
cept for cooperative games. Unfortunately, the two major challenges emerged.
A minor challenge is that there are games which do not have this solution at
all. A major challenge is that computing this solution is not easy. As of now,
it is not even clear whether there exists an algorithm that can compute such a
solution [2, 5].

In the discrete case, it is known that the problem of checking the existence of
an NM-solution is NP-hard. Indeed, we can represent the conflict situation as a
graph, with outcomes as vertices and x � y if and only if there is an edge from x to
y. In graph terms, an NM-solution is a minimum independent dominating set, or
a kernel. The problem of checking the existence of such a kernel is NP-complete.
This result was first proven in [1]; see also [4] (Problem 9.5.10).

Comment. For a general overview of complexity of different conflict resolution
notions, see, e.g., [5] and references therein.

Our idea. A real-life division of the overall sum may involve not just division
of money, but rather a division of objects whose price is also only approximately
known. Thus, the actual value xi allocated to each person is also only approxi-
mately known. Let us introduce the following definition.

Definition 5. Let ε > 0.

� We say that tuples x and x′ are ε-close if |xi − x′i| 6 ε for all i and∣∣∣∣∑
i∈S

xi −
∑
i∈S

x′i

∣∣∣∣ 6 ε for all coalitions S.

� We say that two sets of tuples X and X ′ are ε-close if every x ∈ X is
ε-close to some tuple from X ′, and every x′ ∈ X ′ is ε-close to some tuple
from X.

When we only know ε-approximations x̃ and ỹ to numbers x and y, then we
cannot check whether x > y. To be more precise, if x̃ > ỹ + 2ε, then x > x̃− ε >
> ỹ + ε > y hence x > y. Similarly, if x̃ 6 ỹ − 2ε, then we are sure that x 6 y and
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thus, that x 6> y. However, if ỹ − 2ε < x̃ 6 ỹ + 2ε, then we can have both x > y
and x 6> y. So, we can distinguish between “necessarily larger” relation x̃ > ỹ+ 2ε
and “possibly larger” relation x̃ > ỹ − 2ε.

When we request that no two imputations from the set C dominate each other,
this cannot mean “possibly larger”, since even for x = y, the value yi is possibly
larger than xi. Thus, we need to require “necessarily larger” condition. On the
other hand, when we require that every imputation not from C can be forced into C,
we cannot use the “necessarily larger” condition, since this way we may eliminate
some “forcings”. Thus, we arrive at the following definitions.

Definition 8.

� We say that a tuple x necessarily ε-dominates y, and denote it by x �ε y
if xi > yi + 2ε for all i ∈ S and

∑
i∈S

xi 6 v(S)− ε.

� We say that a tuple x possibly ε-dominates y, and denote it by x �ε y
if xi > yi − 2ε for all i ∈ S and

∑
i∈S

xi 6 v(S) + ε.

� Let X be a set of tuples. We say that a set C is an ε-NM solution for the
set X if the following two conditions are satisfied:

– if x, y ∈ C, then x 6�ε y;
– if y ∈ X − C, then there exists an x ∈ C for which x �ε y.

This modification of the original NM-definition takes into account that we only
know the values v(S) and xi only approximately. Such “approximate” NM-solutions
can be algorithmically computed in the following sense:

Theorem. There exists an algorithm that, given a rational-valued game v and
positive rational numbers ε > δ > 0, returns a finite list of finite sets C1, . . . , CM
such that:

� each of the sets Ci is an (ε+ δ)-NM solution, and

� each (ε− δ)-NM solution C is δ-close to one of the sets Ci.

Proof. Let us use a grid with step δ to form a finite δ-approximation X ′ to the set
X of all imputations. For any subset C of this finite set X ′, we can algorithmically
check whether this set is an ε-NM solution for the set X ′. Let us show that the
list of all such solutions is the desired list C1, . . .

Indeed, one can easily check that if x �α y, x′ is δ-close to x, and y′ is δ-close
to y, then x′ �α−δ y′. Thus, if x′ 6�α−δ y′, then x 6�α y. In particular, if x′ 6�α y′,
then x 6�α+δ y.

Similarly, if x �α y, x′ is δ-close to x, and y′ is δ-close to y, then y′ �α+δ x
′.

Thus, if C is an α-NM solution for X, C ′ is δ-close to C, and X ′ is δ-close to
X, then C ′ is (α + δ)-NM solution for X ′.
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Since each set Ci is an ε-NM solution for X ′, and X ′ is δ-close to X, we
conclude that Ci is an (ε+ δ)-NM solution for the set X.

Vice versa, let C be an (ε − δ)-NM solution for the set X. By construction of
the set X ′, each point from the set X, in particular, each point from C, is δ-close
to some point from X ′. Let C ′ denote the set of all the points from X ′ which are
δ-close to some point from C. By definition, this set C ′ is δ-close to C. Since X ′

is δ-close to X, we thus conclude that C ′ ⊆ X ′ is an ε-NM solution for X ′ and is,
thus, one of the sets Ci. The theorem is proven.
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Аннотация. Одним из основных решений конфликтной ситуации является ре-
шение по Нейману-Моргенштерну (НМ-решение). Интуитивно понятно, что это
набор исходов, описывающих «социальную норму», так что: (1) если кто-то пы-
тается предложить исход не из этого набора, мы можем принудительно включить
этот исход в этот набор, и (2) если выбран исход из этого набора, ни одна ко-
алиция не заинтересована в переходе к другому социально приемлемому исходу.
Есть две основные проблемы, связанные с этим подходом: в некоторых ситуациях
нет такого решения, и не известен ни один общий алгоритм для создания та-
кого решения, когда оно существует. В этой статье, приняв во внимание, что в
реальных жизненных ситуациях исходы известны лишь с некоторой точностью,
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мы покажем, что становится возможным алгоритмически найти соответствующие
«приближенные» НМ-решения.

Ключевые слова: кооперативная игра, решение по Нейману-Моргенштерну, ал-

горитмическая вычислимость, приближение решения по Нейману-Моргенштерну.


