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Abstract. Trigonometric functions form the basis of Fourier analysis — one
of the main signal processing tools. However, while they are very efficient
in describing smooth signals, they do not work well for signals that contain
discontinuities — such as signals describing phase transitions, earthquakes,
etc. It turns out that empirically, one of the most efficient ways of describing
and processing such signals is to use a certain generalization of trigonometric
functions. In this paper, we provide a theoretical explanation of why this
particular generalization is the most empirically efficient one.
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Fourier series and their limitations: a brief reminder. One of the discover-
ies of Isaac Newton was that if we place a prism in the path of (white) solar light,
this light will decompose into lights of different colors. From the mathematical
viewpoint, a monochromatic light is a sinusoid, i.e., the dependence z(¢) of its
intensity = on time ¢ has the form z(t) = A -sin(w -t + ¢) for some constants
A, w, and ¢. The intensity of original white light is equal to the sum of these

components, i.e., to z(t) = S A; - sin(w; - t + ;).
=1

Newton showed that any light can be decomposed in this way, i.e., in effect,
that any signal x(¢) can be represented as a linear combination of sinusoids corre-
sponding to different frequencies w.

This idea was explored in the early 19 century by Jean-Baptiste Joseph Fourier,
who showed that this representation helps in solving many physics-related differen-
tial equations. Computational methods based on such a representation are known
as Fourier techniques. At present, these techniques are ubiquitous in science and
engineering; see, e.g., [9].

However, the Fourier techniques have their limitations: while they work well
for smooth signals, they do not work as well for discontinuous signals that describe
abrupt transitions — such as phase transitions, earthquakes, etc. Specifically, if we
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represent a discontinuous signal as a sum of sinusoids, we get large oscillations
near the discontinuity; this is known as the Gibbs phenomenon.

[t is possible to avoid these oscillations if, instead of representing a signal as a
linear combination of sinusoids, we represent it as a linear combination of discon-
tinuous functions — e..g., Haar wavelets [4] — but the resulting representation is
not very computationally efficient for smooth signals.

[t is therefore desirable to come up with a representation which would be
efficient both for smooth and for discontinuous signals.

Generalized trigonometric functions. A successful semi-heuristic approach
to solving the above problem is the use of generalized trigonometric functions
instead of the sinusoids. Specifically, a sinusoid can be defined as a function which
is inverse to the integral

/ dt _/ dt

vi—e ) a-epe

expanded by periodicity to the entire real line. A generalized trigonometric function
can be defined as a periodic extension of an inverse function to a more general

integral
dt
(1— tp)i/a

for general values p and ¢. The derivative of this generalized function is no longer
everywhere continuous — and the farther p and ¢ from the value 2, the larger this
discontinuity.

Empirically, these functions — for appropriate p and ¢ — are good approximations
both for smooth and for discontinuous signals; see, e.g., [2, 3].

Challenge. The empirical success is here, but so far, there has been no con-
vincing theoretical explanation for this success. In principle, we can think of many
generalizations of trigonometric functions, and it is not clear why namely this
generalization is empirically successful.

This absence of theoretical explanation prevents the wider use of this technique:
the users are reluctant to use it, since they are not sure that the empirical success
so far is not an artifact.

Our objective. In this paper, we provide a physics-motivated theoretical expla-
nation for the empirical success of the generalized trigonometric functions.

Physical meaning of sinusoids: reminder. Sinusoidal signals are frequently
observed in nature, because they correspond to simple oscillations. Namely, they

1
correspond to situations in which the potential energy E, is equal to E,o = §~c-x2

for some constant ¢. In Newtonian mechanics, the kinetic energy is equal to

1
— 5 m (2)?. Thus, the overall energy E = Epot + Exin is equal to

1 1
E:§~c~x2+§-m-(:t)2.
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Sinusoidal oscillations correspond to the idealized case when we can ignore the
friction and when, therefore, the energy is preserved:

1 1
5.0.352_|_§.777,-(;1'5)2:}?0:const.

Thus, once we know the coordinate z, we can determine & as

2Ey —c- x?
N2 0
(LU) - m )
SO
de 2Ey)—c-x?
r=—-—-
dt N/ m

This equation can be simplified if we separate the variables, i.e., if we move all
the terms related to x to the left-hand side and all the terms related to ¢ to the
right-hand side. This can be done if we divide both sides of the above formula by
the right-hand side and then multiply both sides by dt:

dx B
V2Fy —c-12

In appropriately selected units of time and x, we have

Vm - dt.

dx
V1— 2%

thus, the dependence #(x) of ¢ on x has the form

dt =

t—/ dz
V1—a?
The desired dependence z(t) of x on ¢ is the inverse function — which, as we have

mentioned, is exactly the sinusoid.

2

1
Discussion. The formula for the potential energy E,. = 3¢ % is scale-

invariant in the sense that:

e if we change the measuring unit for = to a one which is A times smaller and
thus, change all the numerical values from x to 2’ = A - z,

e then, by appropriately re-scaling the unit for measuring energy, i.e., by taking
E’ = X2 . E, we will have the exact same dependence between E’ and 2’ in

1
the new units: £ = 3¢ (z')?.

1
Similarly, the dependence Fy;, = 3 c-(&)? is also scale-invariant.

Our idea. Scale-invariance — i.e., the fact that the physical laws do not depend
on the choice of measuring units — is an important physical principle. However,
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scale-invariance does not necessarily mean that the potential energy should be
proportional to the square of z: e.g., the dependence FE,, = z*® is also scale-
invariant.

Let us therefore consider a general case in which both components E,.(x) and
Eyin(%) of the overall energy E = E, . (x) + Ein(&) are scale-invariant.

Our idea leads exactly to generalized trigonometric functions. Scale-
invariance of the dependence E,.(z) means that for every parameter A\ describing
re-scaling of the coordinate z, there exists an appropriate re-scaling u(\) of energy
that preserves this dependence, i.e., for which £ = E,.(z) implies that £/ =
= Epot(2'), where E' = pu()\) - E and o’ = X - x. Substituting the expressions for E
and ' into the above formula, we get pu(\) - E = E,ot(A - z). Since E = E,o(z),
we thus get () - Epot(z) = Epot(A - ).

[t is known (see, e.g., [1]) that all continuous (or even integrable) solutions
of this functional equation have the form E,.(z) = c¢- 2P for some constants ¢
and p. Similarly, scale-invariance of the expression for kinetic energy implies that
Eyin() = m - (2)? for some constants m and q.

Thus, the overall energy E = Ey, + E,o takes the form E = c-a2? +m - (&)
In the no-iriction approximation, energy is preserved, so the left-hand side is a
constant. By selecting appropriate units for energy, we can make this constant
equal to 1. Then, by selecting appropriate units for x and for time (hence for ),
we can get a simplified expression 1 = 2P + (£)?. In this case, (£)? = 1 — 2P, hence

dx

= — (1 — pP)/a
=By

SO
dx

(1— xp)l/q

tr) = /Ofl%

The desired dependence x(¢) is the inverse function to this integral ¢(z) — and is,
thus, exactly the above-described trigonometric function.

dt =

and

Conclusion. We have shown that a seemingly arbitrary generalization of si-
nusoids can be naturally derived from a physically meaningful model — and the
only functions obtained from this model are indeed the generalized trigonomet-
ric functions. This derivation provides a theoretical explanation of the empirical
success of these functions — while there are many mathematically possible gener-
alizations of sinusoids, these functions are the only ones which are consistent with
the corresponding physical model.
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Texaccku#t yausepcuret B b [laco, CIIA

AnHoTaumsa. TpuroHomerpuueckue (QyHKIHH JieXaT B OCHOBe aHasn3a Pypbe — onHO-
ro U3 OCHOBHBIX METOLOB 00PaGOTKH CUTHAJOB. TpuUroHoMeTpuyeckue (PyHKIIUU OUYeHb
3¢ (eKTUBHBI, 10K CUTHAJBl IJIafKHe, HO eC/IM CUTHaJ COLEPKHUT HeOXKHUIAHHBIE CKau-
KH, HalpuMep, €CJH CHTHaJ ONUChIBaeT (Da3oBble MepeXxol UM 3eMJeTpsiCeHHe, TO
npuMeHeHne PDypbe-METOLOB BEIET K HM3BECTHBHIM TPYAHOCTSM (TakKHM Kak 3(pQekT
['u66ca). UucieHHBlEe 3KCIIEPUMEHTB MOKA3bIBAIOT, UTO [JI ONHUCAHUS H 00pabOTKH
TAaKUX CHUTHAJIOB ONMH M3 CaMblX 3((EKTUBHBIX METONOB COCTOMT B HCIOJb30BAHHH
MOAXOASALLET0 0600ILIEHNsT TPUTOHOMETPUYECKUX (YHKUMH. B 3TOl cTaTthe MBI MpoOBO-
IUM TeopeTHuecKoe oObsICHEHHE 3TOrO SMIMPHYECKOTo ycrexa.

KatoueBbie cioBa: 0600IEHHbIE TPUTOHOMETPHUECKHE CYyMMbl, 06paboTKa CHUTHAJIOB,
atpdext [M66ca, BeiiBaeTH Xaapa.



