Математические структуры и моделирование 2016. № 1(37). С. 50-58

МОДЕЛИРОВАНИЕ ПЕРЕНОСА КРАСКИ В ЗОНЕ ПЕЧАТНОГО КОНТАКТА С УЧЁТОМ ДЕФОРМАЦИИ

Л.Г. Варепо¹ д.т.н., профессор, e-mail: larisavarepo@yandex.ru **А.В. Паничкин**² к.ф.-м.н., с.н.с., e-mail: panich@ofim.oscsbras.ru

¹Омский государственный технический университет ²Институт математики им. С.Л. Соболева СО РАН

Аннотация. Проведено моделирование переноса краски между вращающимися цилиндрами печатного аппарата многокрасочной офсетной машины на двухмерной сетке с помощью конечно-разностных методов с равномерным шагом. Получены численные решения расщепления краски на выходе из зоны печатного контакта с учётом деформации красконесущей и красковоспринимающей поверхностей.

Ключевые слова: моделирование, модуль упругости, деформация, зона печатного контакта.

Введение

Цель работы заключается в разработке математической модели, методов и программного обеспечения для численного моделирования течения малого объёма вязкой несжимаемой жидкости со свободными границами между вращающимися цилиндрами, характерного для офсетной печати.

1. Постановка задачи

Согласно данным [1], деформации сжатия декелей и бумаг в статистических условиях впервые исследовал К.В. Тир. Указано, что зависимость $\sigma = f(\varepsilon)$ напряжения сжатия σ декеля толщиной δ от относительной ε или абсолютной λ деформации сжатия носит нелинейный характер и выражается следующей формулой:

 $\sigma^m = E \cdot \varepsilon = E \lambda / \delta$, где E и m — постоянные.

В следствии возникающих при печатании упругих деформаций цилиндров печатного аппарата (рис. 1, а) на величину $f_y = f_1 + f_2$ ширина полосы печатного контакта b_y претерпевает изменения и определяется выражением

$$b_y = 2\sqrt{\frac{2R_1R_2}{R_1 + R_2}(\lambda - f_y)},$$

где R_1, R_2 — радиусы жёсткого печатного и упругого (с покрышкой офсетного) цилиндров.

Однако при определении коэффициента перехода не учитываются текстурные характеристики запечатываемого материала.

В работах [1,2] авторами проведено моделирование переноса и расщепления печатной краски между вращающимися цилиндрами (офсетным и печатным) печатного аппарата листовой машины офсетной печати традиционного типа и рассмотрен вариант однокрасочной печати на пористом запечатываемом материале (бумага, картон), но без учёта его деформации.

Задача количественной оценки коэффициента расщепления краски в зоне контакта с учётом его деформации, особенностей текстурных характеристик и постоянно обновляющегося ассортимента основных компонентов печатной системы, до сих пор остаётся актуальной.

2. Методы решения

Ограничимся постановкой задачи в полярной системе координат. Реализация используемого подхода выполнена с помощью разработанного алгоритма численного решения уравнений Навье-Стокса несжимаемой жидкости с применением конечно-разностных аппроксимаций для дифференциальных операторов на компактном шаблоне с учётом деформации резинотканевого полотна и бумаги.

На фиксированной сетке применяются конечно-разностные методы с вводом подвижных граничных узлов для границы печатного цилиндра и свободной границы жидкости, которая в начальный момент находится на офсетном цилиндре без относительного движения. Расчётную область W представим в форме прямоугольника с регулярной сеткой и равномерными шагами h_x , h_y (N_x , N_y — число узлов по координатам x, y).

В печатной секции при проходе жидкости через полосу контакта часть её проникает в структуру бумаги (красковоспринимающую поверхность) за счёт впитывания в поры. В следствии возникающих при печатании упругих деформаций цилиндров печатного аппарата (рисунок 1) для некоторого упругого слоя (бумага, резина) определено динамическое уравнение деформации.

Моделирование этого процесса можно описать с помощью уравнений фильтрации при учёте определённых характеристик пористой среды, таких как средний радиус пор. Будем предполагать, что в начальный момент времени $t_0 = 0$ жидкость покоится. Офсетный и печатный цилиндры имеют радиус R, вращаются в сопутствующих направлениях с угловой скоростью ω .

Согласно [2] уравнения Навье-Стокса для вязкой несжимаемой жидкости (печатной краски) для конкретно заданных условий моделирования печатной системы имеют следующий вид при следующем соответствии координат в сопутствующей системе $(x, y) = (R\theta, R - r)$, при наличии угловой скорости ω и углового ускорения этой системы ε :

Рис. 1. Зона печатного контакта: 1 — офсетный цилиндр; 2 — печатный цилиндр; 3 — резина; 4 — бумага; 5 — слой краски; 6 — краска в порах бумаги; 7 — разрыв и пыление краски; P_0 — внешнее атмосферное давление, P_1 — давление со стороны краски на резину; P_2 — давление со стороны краски на бумагу; H_{1_0} , H_1 , H_{2_0} , H_2 — начальные и после деформации толщины резины (индекс 1) и бумаги (индекс 2); S — площадь сечения в окрестности расчётного узла.

$$\frac{\partial U_r}{\partial t} + U_r \frac{\partial U_r}{\partial r} + \frac{U_{\theta}R}{r} \frac{\partial U_r}{\partial \theta R} - \frac{(U_{\theta} + \omega r)^2}{r} = -\frac{1}{\rho} \frac{\partial P}{\partial r} + \nu \left(\nabla^2 U_r - \frac{U_r}{r^2} - \frac{2R}{r^2} \frac{\partial U_{\theta}}{\partial \theta R}\right),$$

$$\frac{\partial U_{\theta}}{\partial t} + U_r \frac{\partial U_{\theta}}{\partial r} + \frac{U_{\theta}R}{r} \frac{\partial U_{\theta}}{\partial \theta R} + \frac{U_r U_{\theta}}{r} + 2U_r \omega + \varepsilon r = -\frac{1}{\rho} \frac{R}{r} \frac{\partial P}{\partial \theta R} + \nu \left(\nabla^2 U_{\theta} - \frac{U_{\theta}}{r^2} + \frac{2R}{r^2} \frac{\partial U_r}{\partial \theta R}\right), \tag{1}$$

$$\frac{\partial U_r}{\partial r} + \frac{U_r}{r} + \frac{R}{r} \frac{\partial U_\theta}{\partial \theta R} = 0,$$

где

$$\nabla^2 U = \frac{1}{r} \frac{\partial U}{\partial r} + \frac{\partial^2 U}{\partial r^2} + \frac{R^2}{r^2} \frac{\partial^2 U}{(\partial \theta R)^2}$$

— оператор Лапласа, ν — кинематическая вязкость, ρ — плотность жидкости, P — давление, U_r, U_{θ} — компоненты скорости в полярной системе координат.

Численная реализация расчётов течения жидкости по уравнениям (1) представлена в работе [2].

Для некоторого упругого слоя (бумага, резина) плотностью ρ с модулем Юнга E и толщиной H определим динамическое уравнение деформации под давлением P_1 на подвижной границе (в данном случае соприкасающейся с жидкостью, где производится расчёт этого давления). При этом на неподвижной

границе с другой стороны будет возникать давление противодействия P_2 , которое при сравнительно малых скоростях может приближённо приравнено к P_1 , учитывая, что равновесное состояние деформируемого слоя было при внешнем атмосферном давлении P_0 .

Сделаем допущение: скорость движения границ будет меньше на несколько порядков в сравнении со скоростями распространения упругих возмущений, которые будем считать быстро устанавливающимися и не образующими в решении волновых характеристик. При рассматриваемых в работе величинах модуля Юнга, размерах областей и скоростях вращения цилиндров эта величина будет равна от 40000 до 100000. Таким образом, распределение деформации по толщине слоя будем считать равномерной ($\frac{\partial x}{\partial h}$ одинаковая по толщине слоя h) с силой Гука, также равномерно распределённой по толщине ($dF = -c(\frac{\partial x}{\partial h} - 1)dh$). Отсюда для некоторой точки этой поверхности интегральная сила на всю толщину слоя с центром масс x_c будет в виде $F_c = -\int_0^H c(\frac{\partial x}{\partial h} - 1) dh = -c(\frac{\partial x}{\partial h} - 1)H$. При c = ES/H с изменением толщины за время Δt на величину ($\frac{\partial x}{\partial h} - 1$) $H = \Delta r + 2x_c$ эту силу представим в виде: $F_c = -ES/H(\Delta r + 2x_c)$.

При этих же предположениях будем считать, что давление со стороны жидкости P_1 будет выравниваться с давлением на деформируемый слой с другой стороны P_2 (в случае без учёта поля тяготения). И, следовательно, силу воздействия на центр масс слоя через малые площадки *S* можно положить удвоенной в таком виде: $2(P_1 - P_0)S$.

Тогда уравнение движения центра масс такого слоя по его толщине как равномерно деформируемого слоя за некоторый малый промежуток времени Δt , при котором давление P_1 около заданной граничной точки слоя площадью S будет фиксированным (взятым из расчётов движения жидкости), представим в следующем виде:

$$\rho H S \ddot{x_c} = -\frac{E}{H} \left(\Delta r + 2x_c \right) \cdot S + 2(P_1 - P_0) \cdot S, \tag{2}$$

где Δr — величина деформации границы (сжатия) на какой-то момент времени t_1 . Интегрируя уравнение (2) определяем новое смещение границы $\Delta r + 2x_c$ на момент времени $t_2 = t_1 + \Delta t$ с учётом начальных значений на предыдущий момент времени $t_1 \Delta r$, $x_c = 0$ и определённой величины $x_{c,1}^{\cdot}$ от предшествующего расчёта с учётом начального значения $x_{c,1}^{\cdot} = 0$ при $t_1 = 0$ и $\Delta r = 0$, которое после преобразования примет вид:

$$\frac{dx_c^2}{dx_c} = -\frac{4E}{\rho H^2} \left(\frac{\Delta r}{2} + x_c\right) + 4(P_1 - P_0)\frac{1}{\rho H}.$$
(3)

Проинтегрировав (3), получаем решение для скорости перемещения центра масс слоя:

$$\dot{x_c^2} - \dot{x}_{c,1}^2 = -\frac{4E}{\rho H^2} \left(\frac{\Delta r \cdot x_c}{2} + \frac{x_c^2}{2}\right) + 4(P_1 - P_0)\frac{x_c}{\rho H}.$$

Полагая, что интервал времени Δt достаточно мал и что для каждого начального времени t_1 здесь рассматривается $x_{c,1} = 0$, при замене производной $\dot{x_c}$ на конечно-разностную $x_c/\Delta t$ получим уравнение для значения x_c на момент времени t_2 в следующем виде:

$$x_c^2 = \Delta t^2 \bigg[\dot{x}_{c,1}^2 - \frac{4E}{\rho H^2} \bigg(\frac{\Delta r \cdot x_c}{2} + \frac{x_c^2}{2} \bigg) + 4(P_1 - P_0) \frac{x_c}{\rho H} \bigg],$$

или в виде следующего квадратного уравнения:

$$x_{c}^{2} \cdot \left[1 + \frac{2\Delta t^{2}E}{\rho H^{2}}\right] - \frac{4\Delta t^{2}}{\rho H} \left[(P_{1} - P_{0}) - \frac{E\Delta r}{2H}\right] x_{c} - \Delta t^{2} \cdot \dot{x}_{c,1}^{2} = 0.$$
(4)

Решение (4) принимает вид:

$$x_{c} = \frac{2\frac{\Delta t^{2}E}{\rho H} \left[(P_{1} - P_{0}) - \frac{E\Delta r}{2H} \right] \pm \sqrt{\frac{4\Delta t^{4}}{\rho^{2}H^{2}} \left[(P_{1} - P_{0}) - \frac{E\Delta r}{2H} \right]^{2} + \left[1 + 2\frac{\Delta t^{2}E}{\rho H^{2}} \right] \cdot \Delta t^{2} \cdot \dot{x}_{c,1}^{2}}{\left[1 + 2\frac{\Delta t^{2}E}{\rho H^{2}} \right]}$$
(5)

Знак «+» или «-» в (5) выбираем в соответствии со знаком выражения $\left[(P_1 - P_0) - \frac{E\Delta r}{2H} \right]$, которое показывает направление деформации границы. Например, при положительности этой разности величина (величина сжатия) x_c положительна и наоборот для отрицательных значений.

При занулении её величину x_c можно принять тоже равной нулю, тогда и величина $\dot{x}_{c,1}$ будет близкой к нулю и меняющей знак.

В расчётах принимаем модуль упругости офсетного резинотканевого полотна — 29 МПа.

3. Результаты исследования и их обсуждение

На рисунках, представленных ниже, показаны картины деформации границ цилиндров и области течения краски с мгновенными линиями тока, полученными из поля скоростей путём интегрирования в расчётной области следующих соотношений с точностью $O(h_x^2 + h_y^2)$ после задания на одной из границ значений для функции тока $\psi = 0$:

$$\frac{R-y}{R}\frac{\partial\psi}{\partial y} = u, \frac{\partial\psi}{\partial x} = -v.$$

Численные решения на сетке 80х80 приведены на рис. 2-6 при угловой скорости равной $\omega = 10$ рад/с на разные моменты времени с модулями упругости резины и бумаги $E_1 = 2,9 \cdot 10^7 kg/m^2$ и $E_2 = 4,8 \cdot 10^6 kg/m^2$ (размеры области приведены в *mm* по оси *y*, а по оси *x* соответствуют им при y = 0, R = 0, 3m).

Рис. 2. Геометрия границ краски и цилиндров при $t = 0.50 \cdot 10^{-4} c.$

Рис. 3. Геометрия границ краски и цилиндров при $t = 0.26 \cdot 10^{-3} c.$

Рис. 4. Геометрия границ краски и цилиндров при $t = 0.33 \cdot 10^{-4} c.$

Рис. 5. Геометрия границ краски и цилиндров при $t=0,38\cdot 10^{-3}c.$

Рис. 6. Геометрия границ краски и цилиндров при $t = 0.40 \cdot 10^{-3} c$.

Результаты моделирования представлены в табл. 1.

Номер	Шерохо-	Средний	Количество	Количество	Суммарное ко-				
образ-	ватость	радиус	краски,	краски, закре-	личество краски				
Ца	$ R_{lpha} $,мкм	пор, нм	проникшей	пившейся на	на оттиске, %				
			в структуру	поверхности					
			бумаги, %	бумаги, %					
Без учёта деформаций									
1	0,3	55	3,05	52,03	55,08				
2	0,5	110	25,3	35,21	72,54				
С учётом деформаций									
1	0,3	55	2,99	51,43	54,42				
2	0,5	110	16,78	44,17	60,95				

raomiga it i cojnibiarbi pacagemicinini inpaco moro cono	Таблица	1.	Результаты	расщепления	красочного	слоя
--	---------	----	------------	-------------	------------	------

Анализ данных (табл. 1) показывает, что с учётом деформации бумаги количество перешедшей краски с красконесущей поверхности (офсетный цилиндр) на красковоспринимающую — пористый запечатываемый материал (печатный цилиндр) аналогично варианту без учёта деформаций и зависит от текстурных характеристик запечатываемого материала, определяемых его композиционным составом, микрогеометрией его поверхности. Полученные результаты являются подтверждением того, что в случае одновременного учёта деформации и текстурных характеристик бумаги суммарное количество краски на оттиске несколько снижается по сравнению с вариантом без учёта деформаций.

Литература

- 1. Паничкин А.В., Варепо Л.Г., Бобров В.И. Численное моделирование переноса краски в зоне печатного контакта листовой офсетной печати // Известия высших учебных заведений. Проблемы полиграфии и издательского дела. 2012. № 5. С. 30–36.
- 2. Паничкин А.В., Варепо Л.Г. Численный расчёт свободного движения малого объёма вязкой несжимаемой жидкости между вращающимися цилиндрами // Вычислительные технологии. 2013. Т. 18, № 2. С. 62–71.

MODELING OF TRANSFER OF PAINT IN THE ZONE OF PRINTING CONTACT TAKING INTO ACCOUNT DEFORMATION

L.G. Varepo¹

Dr.Sc.(Eng.), Professor, e-mail: larisavarepo@yandex.ru

A.V. Panichkin²

Ph.D.(Phys.-Math.), Senior Scientist Researcher, e-mail: panich@ofim.oscsbras.ru

¹Omsk State Technical University, Moskow State University of Seal of Ivan Fedorov ²Mathematics Institute of Sobolev SB RAS,

Abstract. Modeling of transfer of paint between rotating cylinders of the printing is carried out the device of the polichromatic offset car on a two-dimensional grid by means of the final and differential methods with an even stride. Numerical solutions of splitting of paint at the exit are received from a zone of printing contact taking into account deformation of paint-bearing and paint-absorbing surfaces.

Keywords: modeling, modulus of elasticity, deformation, zone of printing contact.