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Abstract. The Graph isomorphism problem is considered from the point of
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Introduction

In this paper we consider the search graph isomorphism problem SGI in the
context of ”search problems with a promise” as they defined in [4,6,7].

In existing literature (see for instance [9]) the decision and search variants of
the graph isomorphism problem are formulated as follows:

P1: Given two graphs G and H with n vertices each, decide whether they are
isomorphic.

P2: Given two graphs G and H, decide whether they are isomorphic, and if so,
construct an isomorphism from G to H.

Note that P2 contains P1 as a subproblem. Recently, A.N. Rybalov suggested to
isolate the search version from the decision version as follows [12]. By definition,
the input set for search graph isomorphism problem SGI is the set of all pairs of
isomorphic graphs. Given two isomorphic graphs G and H, one needs to construct
the isomorphism between G and H. Thus in Rybalov’s setup of the SGI the
input graphs are already assumed to be isomorphic, whereas in version P2 above
the input graphs are arbitrary. The seemingly unusual input set in SGI can be
elegantly explained in the framework of ”promise problems” in the sense of [4, 6].
Promise problems are a natural generalization of search and decision problems,
where one explicitly considers a set of legitimate instances (rather than considering
any string as a legitimate instance). Informally, a promise decision problem has
the following structure: input x, promise P (x), property R(x), where P and R are
unary predicates. An algorithm solves the promise problem if, given an input x,
it answers the question whether R(x) given that P (x). The behavior of such an
algorithm may be arbitrary on instances x for which the promise P is false [10].
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In this paper we formulate the search graph isomorphism problems ”with a
promise” and study their reducibility and generic solvability in polynomial time.
We make use the ”type-invariant” of a graph introduced in [2, 13, 14]. Our main
result is Theorem 5, which presents the polynomial-time algorithm A, solving the
problem SGI (Pisom, R) for asymptotically almost all inputs Pisom ∩ Poblique.

In Section 1 we give the necessary definitions about computation problems.
Section 2 is devoted to the formulation of the search graph isomorphism problem
(with a promise). Section 3 contains definitions of computational problems in the
case of graphs. Section 4 contains the proof of polynomial reducibility of search
graph isomorphism problem SGI to the graph isomorphism problem. In Section 5
we discuss the main tool - the graph invariant τ and oblique graphs. In Section
6 the efficient solvability of our problems in case of oblique graphs. In Section 7
we solve the SGI problem in generic case. Finally, in the last section we apply our
results to probabilistic algorithms.

1. Decision and search with a promise

We start with the standard definitions of decision and search computational
problems as they presented in [11] and [7]. Let I = {0, 1}∗ be the set of all
words (=binary strings) in the alphabet {0, 1}. We consider algorithms as means
of computing functions. Specifically, an algorithm A computes the function fA :
{0, 1}∗ → {0, 1}∗ defined by fA(x) = y if, when invoked on input x, algorithm A
halts with output y. We associate the algorithm A with the function fA computed
by it; that is, we write A(x) instead of fA(x).

Decision problems. Let’s denote by Ik the k-th direct power I × · · · × I of I
for k > 1. A decision problem for a subset (=language) L ⊆ Ik is to determine
for a given tuple w ∈ Ik whether w belongs to L or not. An algorithm A solving
this problem is the decision algorithm for L, and in this case the decision problem
for L, as well as the language L, is called decidable.

If L is decidable and additionally there are positive constants c, q such that for
every instance x ∈ Ik the algorithm A determines the membership of x to L in at
most c |x|q steps, then the decision problem for L, as well as L is called polynomial-

time decidable (or decidable in polynomial time). Here, for a tuple x = (x1, ..., xk)
we let denote by |x| the maximum max |xi| of lengths of words xi.

Decision problems with a promise. More general class of partial decision
problems was introduced in [4] under the name of ”promise problems”. Formally,
a partial decision problem is a pair of decidable subsets (L, P ) of Ik, where P is the
set of allowed or promised tuples and P = Ik − P is the set of disallowed tuples.
The promise problem (L, P ) is solved by algorithm A if for every x ∈ P ∩L it holds
that A(x) = 1 and for every x ∈ P − L it holds that A(x) = 0. Shortly,

A (x) =

(
1 if x ∈ P ∩ L,
0 if x ∈ P − L

)
. (1)

Thus, the algorithm A is required to distinguish yes-instances P ∩ L from no-
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instances P − L and A is allowed to have arbitrary behavior on inputs P that are
neither yes-instances nor no-instances. A set L1 is called a solution to the partial
decision problem (L, P ) if L1∩P = L. Clearly, when P = Ik we have the notion of
a standard decision problem. A partial decision problem (L, P ) is polynomial-time

decidable if there is a polynomial-time decidable solution L1 of it.

Remark 1. In [7, 8] a more restrictive definition is used, namely the promise
problems (L, P ) are considered with the condition L ⊆ P . It is not enough for our
purposes, see Section 5.

Search problems. A search computational problem can be described by a
binary relation R ⊆ Ik × I l for some fixed k, l > 1. The problem is ”given an
input x ∈ Ik, find y such that R(x, y) holds, if such y exists”. More precisely, one
requires, for a given x ∈ Ik to decide first whether there exists y ∈ I l such that
R(x, y) holds, and only after that to find such y if it exists.

Let us consider R as a multi-valued function R(x) = {y : (x, y) ∈ R}. The
associated solution set is SR = {x : R (x) 6= ∅}. A function f : Ik → I l ∪ {⊥} is
called a branch of R (x) if f (x) ∈ R (x) for all x ∈ SR and f (x) =⊥ for all x 6∈ SR
(thus f (x) =⊥ indicates that x has no solution). We say that the branch function
f of R solves the search problem of R. As before, we write A(x) for f(x) for an
algorithm A, computing the function f .

Note, that the search problem for R contains the decision problem for a solution

set SR = {x : R (x) 6= ∅} as a subproblem. Indeed, if A computes the branch of R,
then x ∈ SR iff A (x) 6=⊥.

A relation R ⊆ Ik × I l is polynomially bounded if there exists a polynomial p
such that for every (x, y) ∈ R it holds that |y| 6 p (|x|). The search problem of
a polynomially bounded relation R ⊆ Ik × I l is efficiently solvable if there exists
a branch function f of R which is polynomial-time computable. In this case an
algorithm A, computing this function, is called a polynomial-time algorithm for the
search problem R. We denote by PF the class of polynomially bounded search
problems that are efficiently solvable [8].

Search problems with a promise [8, p.143]. A search problem with a

promise consists of the input set Ik, a binary relation R ⊆ Ik × I l and a promise

set P ⊆ Ik. Such a problem is also referred to as the search problem R with

promise P and is denoted by (P,R). The search problem (P,R) with promise P
is solved by algorithm A if for every x ∈ P it holds that (x,A(x)) ∈ R if x ∈ SR
and A(x) =⊥ otherwise. Thus, the restriction function A|P is the branch of the
relation R ∩

(
P, I l

)
. ”We stress that nothing is required of the solver in the case

that the input violates the promise (i.e., x 6∈ P ); in particular, in such a case the
algorithm may halt with a wrong output” [8, p.143]. Note that the full search
problem

(
Ik, R

)
with a promise Ik is the standard search problem. And at the

other extreme there is the so called candid search problem (SR, R) with promise
SR.

The time complexity of A on inputs in P is defined by

TA|P (n) = max{tA(x) : x ∈ P ∩ {0, 1}n}, (2)
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where tA(x) is the running time of A(x). A problem (P,R) is polynomially-time

decidable if there is an algorithm A such that function TA|P is bounded by a
polynomial in n. ”In this case, it does not matter whether the time complexity
of A is defined on inputs in P or on all possible strings. Suppose that A has
(polynomial) time complexity T on inputs in P ; then we can modify A to halt
on any input x after at most T (|x|) steps. This modification may only affect the
output of A on inputs not in P (which are inputs that do not matter anyhow). The
modification can be implemented in polynomial time by computing t = T (|x|) and
emulating the execution of A(x) for t steps.” [7, p.88].

Algorithms which are polynomial-time on asymptotically almost all in-
puts. By the very definition of the search problem (P,R), it becomes easier when
decreasing the promise P . If the given problem (P,R) is hard, then it makes
sense to consider a restriction problem (P ′, R) with a promise set P ′ ⊂ P and ask
whether (P ′, R) is polynomial-time decidable. This may happen when P ′ is small
enough, for instance when P ′ is finite. Thus, it is highly desirable to find out
a polynomial-time decidable restriction (P ′, R) with P ′ being maximally close to
P . For a rigorous definition of closedness we need a size function on the promise
set P , i.e. any computable function x 7→ ‖x‖ ∈ N such that for every n ∈ N
the set Pn = {x ∈ P : ‖x‖ = n} is finite. Furthermore, we need an ensemble of

distributions D = (Dn) with Dn a distribution on the set Pn [1]. The closedness
of P ′ to P can be measured by the asymptotic density (=asymptotic probability) (if
exists)

D (P ′) = lim
n→∞

Dn (P ′ ∩ Pn) . (3)

A subset P ′ ⊆ P is said to be asymptotically almost certain (=generic) if
D (P ′) = 1. In the theory of random graphs another terminology is accepted: the
event P ′ ⊆ P as above happens asymptotically almost surely (=a.a.s) or with high

probability (=w.h.p.). The complement of a generic set is said to be negligible.

A search problem (P,R) is polynomial-time decidable with high probability (=for

asymptotically almost all inputs) if it admits a polynomial-time decidable restriction
(P ′, R) such that P ′ is asymptotically almost certain in P (relative to a fixed size
function and fixed distribution ensemble. Similar definitions can be given in case
of promise decision problems.

2. Graph problems

Let Gn denote the set of all graphs on the set of vertices [1;n] = {1, . . . , n}. The
set Gn is naturally acted upon by the symmetric group Sn on the set [1;n]. The
orbits of this action are precisely the isomorphism classes of graphs from Gn.

We encode graphs as binary strings as usual. Namely, let (gij) be the adjacency
matrix of G then we encode G by the string (g12g13 · · · g1ng23 · · · g2n · · · gn−1,n).
This encodes Gn bijectively onto I

n(n−1)
2

. The permutations φ ∈ Sn are in one-one

correspondence with n × n monomial matrices and the last ones can be encoded
row by row by binary strings in In2. We consider the graph isomorphism problem



Mathematical Structures and Modeling. 2015. N. 4(36) 57

GI(L, P ) as a partial decision problem (L, P ) whose input set is I × I , whose
promise set is a decidable subset P ⊆ Pall, where

Pall = ∪n (Gn × Gn) = ∪n
(
In(n−1)

2

× In(n−1)
2

)
(4)

and whose language L of yes-instances is defined by

L = Pisom
def
= {(G,H) ∈ Pall : G ' H} . (5)

The standard GI-problem is (Pisom, Pall). It is to determine for a given tuple
(G,H) ∈ I2 whether G ' H or not.

In view of exceptional hardness of (Pisom, Pall) the problems (Pisom, P ) have
been considered with P being the pairs of graphs from some interesting classes of
graphs, such as trees, planar graphs, graphs of bounded valence, etc. For instance,
it is well known, that promise decision problem (Pisom, Ptrees) , where Ptrees is the
class of all finite trees, is polynomial-time decidable.

Accompanying to GI is SGI - the search graph isomorphism problem with a

promise. This problem is denoted by SGI (P,R) and consists of the input set I2,
relation R ⊆ I2 × I and a promise set P ⊆ I2. The relation R is defined by

R =
{

(G,H, φ) : ∃n such that G,H ∈ Gn, φ ∈ Sn ⊆ In2 and φ : G ' H
}
. (6)

The promise set P is an arbitrary decidable subset of Pall. The problem requires,
for a given pair of graphs (G,H) ∈ P to decide first whether they are isomorphic
and then to find an isomorphism φ : G ' H.

The problem SGI (P,R) with promise P is solved by algorithm A if for every
(G,H) ∈ P it holds that ((G,H), A(G,H)) ∈ R if G ' H and A(G,H) =⊥
otherwise. We see, that the full search problem (Pall, R) with a promise Pall is the
standard SGI-problem as it is defined for instance in [9]. This problem contains the
standard decision problem GI (Pisom, Pall) as a subproblem. Indeed, if an algorithm
A solves SGI (Pall, R) then (G,H) ∈ Pisom if and only if A(G,H) =⊥, thus A
recognizes whether an isomorphism between G and H exists or not.

At the other extreme there is the candid search problem (SR, R) with promise
SR, where SR = {x : R (x) 6= ∅} is the solution set of R . In our case it is clear
that

SR = Pisom =
{

(G,H) ∈ I2 : G ' H
}
. (7)

And again, the full search problem SGI (Pall, R) contains the candid search
problem SGI (SR, R) as a subproblem. We consider SGI (SR, R) as an adequate
formulation (in terms of promise problems) for the problem SGI from [12]. We
find the following problem rather intriguing:

Problem 1. Is the standard isomorphism problem GI (Pisom, Pall) polynomial-
time reducible to SGI (SR, R)?
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3. The problem SGI (Pall, R) is polynomial-time reducible to
GI (Pisom, Pall)

Theorem 1. The full search isomorphism problem SGI (Pall, R) is polynomial-
time reducible to the standard isomorphism problem GI (Pisom, Pall).

Proof. (Cf. [9, Thm.6, p.29]) It is easy to see that SGI can be reduced to the case
of graphs without isolated vertices.

Ascent. Suppose we have a polynomial-time algorithm A recognizing the
graph isomorphism. Given two isomorphic graphs G,H on n vertices and the list
of vertices VG = {g1, . . . , gn}, we will construct inductively and efficiently (=in
polynomial time) the sets of graphs G = G0 < G1 < · · · < Gn, H = H0 < H1 <
· · · < Hn and the vertices h1, . . . , hn ∈ VH such that:

1) Gi ' Hi for all i,
2) Every isomorphism between Gi and Hi takes Gi−1 to Hi−1 for all i = 1, . . . , n,
3) Every isomorphism between Gi and Hi takes gi to hi for all i = 1, . . . , n.

The construction is defined as follows. Let Kn+1 denote the complete graph
on n+ 1 vertices. Fix k1 ∈ Kn+1 and consider

G1 = G ∪g1=k1 Kn+1, H1 (h) = H ∪h=k1 Kn+1,

where ∪x=y denote the gluing operation on graphs with identified vertices x = y.
Since G ' H, there exists h such that G1 ' H1 = H1 (h), namely h is the image
of g1 under isomorphism G ' H. We find out h by applying A to all n pairs
(G1, H1(h)). Set h1 = h. By assumption, G,H have no isolated vertices, so g1, h1

are unique vertices of highest degree in G1, H1. Hence every isomorphism between
G1 and H1 takes g1 to h1. Moreover, all vertices of G distinct from g1 have degree
(in G1) no greater than n− 1, whereas all the vertices of Kn+1 have degree (in G1)
at least n. Therefore, every isomorphism between G1 and H1 takes G0 to H0. Thus
1)-3) hold for i = 1.

Fix k2 ∈ Kn+2. For all h ∈ VH construct the graphs

G2 = G1 ∪g2=k2 Kn+2, H2 (h) = H1 ∪h=k2 Kn+2. (8)

Since G1, H1 are isomorphic, there exists h such that G2 ' H2 and we can find
h applying A to all n pairs of graphs G2, H2 (h). Fix any such h and denote it by h2.
Continuing, we find out the desired h1, . . . , hn ∈ H and G = G0 < G1 < · · · < Gn,
H = H0 < H1 < · · · < Hn.

Descent. The map gi 7→ hi is an isomorphism between G and H! Indeed, by 1)
there exists an isomorphism φ : Gn → Hn. By 2) φ takes gn to hn. The restriction
φ|Gn−1 takes Gn−1 to Hn−1 by 2) and takes gn−1 to hn−1 by 3). Then φ|Gn−1takes
Gn−2 to Hn−2 and we can continue this descent process until obtaining that φ takes
every gi to hi. Hence the map gi 7→ hi is an isomorphism in question. �

4. Graph invariant τ and oblique graphs

Graph invariant τ [2,13,14].
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Let N denote the set of all natural numbers (taken as 1,2,3,4,. . . ). A string over
N is a finite sequence of natural numbers, that is, an integer n > 0 and a mapping
{1, ...., n} → N. If n = 0, the domain is the nullset and there is a unique such
mapping, called the nullstring and generally denoted ε [3]. Let N∗ denote the set of
all finite strings of natural numbers (including the nullstring ε). The lexicographic

order ranks strings of the same length in N∗, by comparing the letters in the first
position where the strings differ. We define the ShortLex order on N∗: v < w if
and only if v is shorter than w, or they have the same length and v comes before
w in lexicographical order. ShortLex order is a well-ordering.

Let G = (V,E) be a simple graph. By d(x) we denote the degree of the vertex
x. The set of all vertices adjacent to v is denoted by N (v).

The type-string τG(v) ∈ N∗ of a vertex v is the string of degrees of vertices
of N (v) in non-decreasing order. We set τG (v) = ε for isolated vertex v. In
detail, τG (v) = (d1, ..., dd(v)) is the degree sequence of the vertices adjacent to v,
arranged in non-decreasing order: d1 6 d2 6 . . . 6 dd(v). Clearly a type-string is
preserved under graph isomorphisms: if φ : G → H is a graph isomorphism then
τH (φ (v)) = τG (v) for all v ∈ V (G), i.e. τH ◦ φ = τG.

The type-vector τG of G is the ShortLex ordered sequence (τG (v1) , . . . , τG (vn)) ,
n = |V | of all type-strings of all vertices (thus τG is used to denote a vector as
well as a map). Clearly the type-vector function G 7→ τG is a graph invariant, i.e.
τG = τH for isomorphic graphs G,H. However, as the next example will show,
the type-vector is not a complete graph invariant, i.e. there exist non-isomorphic
graphs with the same type-vector. The examples will be found among regular
graphs. A graph G is said to be k-regular if all the vertices of G have the same
degree k. In this case τG =

(
k∗k, . . . , k∗k

)
has n coordinates, n = |VG|, where

k∗k = (k, . . . , k) ∈ N∗ is a string with k coordinates. Thus all k-regular graphs on
n vertices have the same τ -invariant.

Proposition 1. There exist two non-isomorphic graphs G1, G2 on 8 vertices
all of whose degrees are equal 5. In particular G1, G2 have the same type-vector
(5∗5, 5∗5, 5∗5, 5∗5, 5∗5, 5∗5, 5∗5, 5∗5), where 5∗5 = (5, 5, 5, 5, 5) ∈ N∗.

Proof. Define G1, G2 as on Figure 1.
Degree conditions are clearly fulfilled. It is left to ensure that the graphs are

non-isomorphic. For this it is enough to ensure that the complement graphs are
non-isomorphic. The complement to the first graph is two disjoint 4-cycles ACHF
and BDGE (so it is disconnected), whereas the complement to the second graph
is an 8-cycle AFEBHCDG (hence it is connected). The non-isomorphism is clear
now.

�

Despite the fact that τ is not complete, it turns out to be asymptotically com-

plete, i.e. for asymptotically almost all graphs G,H the equality τG = τH implies
that G,H are isomorphic (see [2,13] and Section 7).

A graph G is said to be oblique if the map τG : V → N∗ is injective or, in other
words, there are no distinct vertices u, v ∈ V (G) such that τG (u) = τG (v) [14].
Figure 3 shows an example of oblique graph on 8 vertices [5].
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Figure 1. Graphs G1 and G2.

Figure 2. Complement graphs G1 and G2.

Lemma 1 (uniqueness of the type-vector). If a graph G is oblique
then its type vector τG = (τG (v1) , . . . , τG (vn)) is unique in the sense that
(τG (v1) , . . . , τG (vn)) = (τG (w1) , . . . , τG (wn)) implies that vi = wi for all i.

Proof. Indeed, by assumption τG (vi) = τG (wi) for all i, hence by obliqueness
vi = wi for all i. �

Lemma 2 (retrieving an isomorphism). Let τG = (τG (g1) , . . . , τG (gn)) , τH =
= (τH (h1) , . . . , τH (hn)) be the type-vectors of graphs G,H respectively. If G is
oblique and G ' H then the map gi 7→ hi is the isomorphism of G onto H and
there is no other isomorphism between G and H can be drawn. In particular,
every oblique graph has a trivial automorphism group.

Proof. Let τG = (τG (g1) , . . . , τG (gn)) , τH = (τH (h1) , . . . , τH (hn)) be the type-
vectors of graphs G,H respectively, let G be oblique and let φ : G → H be an
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5 (2, 3, 4, 4, 5)

5 (2, 3, 3, 4, 5)

4 (2, 3, 4, 5)

4 (3, 4, 5, 5)

(3, 5) 2

(4, 5) 2

(4, 5, 5) 3

(2, 4, 5) 3
Figure 3. A vertex-oblique graph on 8 vertices. The degrees of vertices and their neighbors are

written in columns

arbitrary isomorphism. By assumption τG : V (G) → N∗ is injective, so τH =
= τG ◦ φ−1 : V (H) → N∗ is injective also and thus H is oblique. The vector of
strings

(τH (φg1) , . . . , τH (φgn)) = (τG (g1) , . . . , τG (gn)) (9)

is the type-vector of H because its coordinates are all type-strings of all vertices
of H (looking at the left-hand side) and they are ShortLex ordered (looking at the
right-hand side). Thus we have two type-vectors for H:

(τH (φg1) , . . . , τH (φgn)) = τH = (τH (h1) , . . . , τH (hn)) . (10)

By the uniqueness Lemma φgi = hi for all i. Hence the map gi 7→ hi = φgi is
an isomorphism of G onto H ; moreover, there is no other isomorphism between
G and H. �

5. Efficient solvability of GI (Pisom, Poblique)
and SGI (Pisom ∩ Poblique, R)

Consider the following sets of pairs of graphs:

Pall = ∪n (Gn × Gn) , (11)

Pisom = {(G,H) ∈ Pall : G ' H} , (12)

Poblique = {(G,H) ∈ Pall : G and H are oblique} . (13)

It is easy to see that all these sets are decidable.

Theorem 2. The promise decision problem GI (Pisom, Poblique) is polynomial-
time solvable.

Proof. (Cf. [2,13] ) This time the promise set Poblique does not contain the language
Pisom, so we need the formalism of promise problems in full generality. Precisely,
an algorithm A solves instance (G,H) of Poblique iff

A (G,H) =

(
1 if (G,H) ∈ Poblique ∩ Pisom
0 if (G,H) ∈ Poblique − Pisom

)
. (14)
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On instances out of Poblique the behavior of A may be rather arbitrary. Since
Poblique is decidable, we can construct the required algorithm A by splitting into
cases depending on whether a given instance (G,H) belongs to Poblique or not.
Precisely, we put A (G,H) = 0 on instances (G,H) ∈ I2 − Poblique. The idea of the
restriction algorithm A|Poblique is to distinguish all vertices of a graph using the
invariant τ . Given a pair (G,H) ∈ Poblique the required algorithm A first computes
the type-vectors

τG = (τG (g1) , . . . , τG (gn)) , τH = (τH (h1) , . . . , τH (hn)) . (15)

If τG = τH then A checks whether the map φ : gi 7→ hi is an isomorphism from
G to H or not. If it is an isomorphism then we put A (G,H) = 1. Otherwise
Lemma 2 asserts that G,H are not isomorphic, so A (G,H) = 0.Thus A is well
defined on all inputs I2 and it solves the given problem. It is easy to see that the
running time of A is linear in |V |+ |E|. �

Theorem 3. The problem SGI (Pisom ∩ Poblique, R) with relation

R =
{

((G,H) , φ) ∈ I2 × I : ∃n such that G,H ∈ Gn, φ ∈ Sn ⊆ In2 and φ : G ' H
}

(16)
is polynomial-time solvable.

Proof. By definition the given problem is solved by algorithm A if for every
(G,H) ∈ Pisom ∩ Poblique the inclusion ((G,H), A(G,H)) ∈ R holds in case G ' H
and A(G,H) =⊥ otherwise. Given the n−vertex graphs G,H the required algo-
rithm A first computes the type-vectors

τG = (τG (g1) , . . . , τG (gn)) , τH = (τH (h1) , . . . , τH (hn)) . (17)

If the coordinates either of τG or τH are not distinct then at least one of graphs
is not oblique i.e. (G,H) 6∈ Pisom ∩ Poblique. In this case we let A (G,H) = id ∈
∈ Sn. Otherwise both of graphs are oblique and then algorithm compares the
type-vectors. If τG 6= τH , then G,H are not isomorphic and thus A (G,H) is
already defined. If τG = τH then the algorithm checks whether the map φ : gi 7→ hi
is an isomorphism or not. If this map turns out to be an isomorphism then the
algorithm gives φ as the answer to the problem. Otherwise, if the map is not an
isomorphism, Lemma 2 asserts that there is no isomorphism between the given
graphs at all. That is this case is impossible by the very setup of the problem.
Thus the algorithm A gives the right answer for the set of inputs Pisom ∩ Poblique
and A (G,H) = id on the complement set Pisom ∩ Poblique, which may be the wrong
answer (but also may be right answer occasionally). �

6. Generic algorithms for GI and SGI and their failure
probability

Theorem 4. Endow the set Pall with the ensemble of distributions (Dn), where
Dn is the uniform distribution on the set P n

all of pairs of n-vertex graphs. Then
Pisom ∩ Poblique is asymptotically almost certain in Pisom.
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Proof. Let Gon denote the set of oblique graphs on vertices 1, 2, ..., n. We rely on
the result from [2,13] which says that the property of a graph G ∈ Gn to be oblique
holds asymptotically almost surely, i.e.

lim
n→∞

|Gon|
|Gn|

= 1, (18)

or, equivalently,

lim
n→∞

|Sn|
|Gn|

= 0, (19)

where Sn = Gn − Gon.
We have to prove that

lim
n→∞

∣∣P n
isom ∩ P n

oblique

∣∣
|P n
isom|

= 1, (20)

or, equivalently,

lim
n→∞

|P n
isom ∩ (Sn × Sn)|
|P n
isom|

= 0. (21)

Consider the natural projection map onto the first coordinate pr1 : P n
isom → Gn.

What is the cardinality of the inverse image (=fiber over G) of a graph G under pr1?
Each isomorphism class of G ∈ Gn consists of at most n! elements, so

∣∣pr−1
1 G

∣∣ 6 n!
for every G ∈ Gn, hence

|P n
isom| > n! |Gn| . (22)

In case G is oblique, we can say more:
∣∣pr−1

1 G
∣∣ = n!. Indeed, by Lemma 2,

Aut (G) = 1 and thus the orbit SnG consists of n! graphs and the set (G,SnG) is the
inverse image of G under pr1. Thus each fiber of the map pr1 : P n

isom∩ (Gon × Gon)→
→ Gon has cardinality n!. Hence |P n

isom ∩ (Gon × Gon)| = n! |Gon| and so

|P n
isom| > n! |Gon| . (23)

Considering the fibers of pr1 over the set Sn , we conclude that

|P n
isom ∩ (Sn × Sn)| 6 n! |Sn| . (24)

Finally, combining inequalities 23 and 24 and the result 19, we obtain

|P n
isom ∩ (Sn × Sn)|
|P n
isom|

6
n! |Sn|
n! |Gon|

=
|Sn|
|Gon|

=
|Sn|

|Gn| − |Sn|
= (25)

=
|Sn|
|Gn|

(
1

1− |Sn||Gn|

)
→ 0, n→∞. (26)

�
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Remark 2. It is shown in [2] a linear time, high probability canonical labeling
algorithm for G(n, p) graphs for p = ω(ln4 n/n ln lnn) and p 6 1/2. Here, high
probability means probability at least 1 − O(n−c) for every c > 0. It follows that
Pisom∩Poblique is asymptotically almost certain with the rate of convergence at least
1−O(n−c) for every c > 0.

Here we prove the main theorem in the following more precise formulation.

Theorem 5. Any algorithm A, constructed in Section 5. to solve the problem
SGI (Pisom ∩ Poblique, R) , solves also the problem SGI (Pisom, R) for asymptoti-
cally almost all inputs Pisom ∩ Poblique. In other words, the failure probability of
the algorithm A tends to zero as n tends to infinity.

7. Applications to probabilistic algorithms

Recall that the input set of the problem SGI (Pisom, R) is I2 × I, the promise
set is

Pisom = {(G,H) : ∃n such that G,H ∈ Gn, G ' H} , (27)

and the relation is

R =
{

(G,H, φ) : ∃n such that G,H ∈ Gn, φ ∈ Sn ⊆ In2 and φ : G ' H
}
. (28)

A.N. Rybalov considered a search graph isomorphism problem with particularly
small promise set Pγ ⊆ Pisom [12]. Namely, fix an infinite sequence of graphs
γ = (Gn)n∈N , such that Gn ∈ Gn for all n and define

Pγ = {(G,Gn) : n ∈ N, and G,Gn ∈ Gn, G ' Gn} . (29)

A.N. Rybalov studied the problems of the type SGI (Pγ, R) which clearly are all
the restrictions of the candid search problem SGI (Pisom, R).

The main result of A.N.Rybalov is the following.

Theorem 6. [12] If there exists a polynomial generic algorithm for
SGI (Pγ, R), then there exists a polynomial probabilistic algorithm computing
SGI (Pγ, R) for all inputs.

From this and from our Theorem 5 we derive the following

Theorem 7. If the sequence of graphs γ = (Gn)n∈N consists of oblique graphs,
then the problem SGI (Pγ, R) is polynomial-time solvable and there exists a
polynomial probabilistic algorithm computing SGI (Pγ, R) for all inputs.
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Аннотация. Проблема изоморфизма графов рассматривается с точки зрения тео-
рии «проблем с посулом», развитой Ивеном, Зелманом и Якоби [4]. Изучается
«тау-инвариант» графов и с его помощью решается проблема поиска изоморфизма
для асимптотически почти всех графов.

Ключевые слова: проблема разрешимости, проблема поиска с посулом, изомор-
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