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Abstract. Newton’s mechanics is one of the most successful theories in the
history of science; its success is based on three Newton’s laws. At first
glance, the Newton’s laws that describe the relation between masses, forces,
and accelerations are very clear and straightforward. However, the situation
becomes more ambiguous if we take into account that the notions of mass and
force are not operationally defined. In this paper, we describe the operational
meaning of Newton’s laws.

Keywords: Newton’s laws, operational meaning, mass, force.

1. It Is Important to Reformulate Newton’s Laws in Oper-
ational Terms: Formulation of the Problem

Original formulation of Newton’s laws: reminder [1, 5]. The first Newton’s
law – law of inertia – states that if no force is acting on a body, this body retains
its speed and direction of motion. The second law states that the force ~F is equal
to the product of mass m and acceleration ~a: ~F = m · ~a. The third law states that
if a body A acts on a body B with a force ~F , then the body B acts on the body A
with the force −~F .

Pedagogical problem: we need an operational reformulation. Of course, we
have an intuitive notion of what is a mass and what is a force. However, for most
people, these intuitive notions are somewhat vague, and to understand Newton’s
laws, we need to be able to provide a precise numerical meaning of these terms.

Without such operational meaning, Newton’s laws sound very abstract: there
exist some precise notions of mass and force for which the above three laws hold.
This is probably how some students understand these laws. If all we have is such
an abstract formulation, it is no wonder that some students have trouble applying
these laws to real-life problems.

Foundational problem: we need an operational reformulation. Operational
reformulation is needed also because Newton’s laws aim at describing the physical
world. How do we know that these laws are valid? How can we check that these
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laws are not valid? For example, what do physicists mean when they claim that
Newton’s laws are not valid in relativistic mechanics?

When Newton’s laws are formulated in the above abstract form, without pro-
viding any operational meaning for mass and force, then it is not clear how to
check whether the given experimental data supports these laws or not. To be able
to do that, we need to reformulate Newton’s laws in operational terms, i.e., in
terms of observations.

2. Reformulating Newton’s Laws in Operational Terms: A
Straightforward Approach

First Newton’s law: a straightforward reformulation. The first Newton’s
law was actually first formulated by Galileo [3]. This law has a straightforward
operational interpretation: if we have only one body A, then its acceleration is zero:
~aA = 0.

Of course, in reality, we always have some other bodies in the Universe, but
if these bodies are sufficiently far away, we can safely assume that their influence
is negligible. We can therefore reformulate this law in the following form: when
we move a body A further and further away from all other bodies, its acceleration
gets closer and closer to 0.

Comment. This reformulation assumes that the force between the bodies decreases
as the distance between them increases. This is definitely true for usual forces
such as gravity or electromagnetic forces, but it is worth mentioning that not all
forces are like that: for example, the force acting between the two quarks increases
when the distance between them increases; see, e.g., [1].

Second Newton’s law: does it mean anything? By itself, the second Newton’s
law can be simply viewed as a definition of the force: once we know how to define
masses, we can then define the force ~F as the product m ·~a. Thus, no matter how

bodies move, the second law is always satisfied, if we simply take ~F
def
= m · ~a.

From this viewpoint, the second law does not tell us anything at all. Okay,
there is an implicit assumption of determinism here, that if we place the same
bodies at same locations with same initial velocities, then we will observe the
same accelerations, but from the second law itself, we cannot conclude anything
beyond that.

Comments.

� It is also usually implicitly assumed that a finite number of parameters is
sufficient to describe a body, its position, velocity, and orientation, and that
once we know the values of all these parameters, we can uniquely determine
all the forces.

� Determinism is what distinguishes Newton’s mechanics from quantum
physics, where we can only predict probabilities of different measurement
results, but not the measurement results themselves.
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What if we also take into account the third law? If we also take the third
law into account, then the situation changes. Literally, the third law says that for
every two bodies A and B, the force ~FA|B with which the body B acts on the body
A and the force ~FB|A describing the influence of the body A on the body B are
related by the formula ~FB|A = −~FA|B. If we substitute the definition ~F = m ·~a into
this formula, we conclude that in the situation when we only have two bodies A
and B, the following is true: mB · ~aB|A = −mA · ~aA|B, where mA and mB are the
masses of the bodies A and B, and ~aA|B and ~aB|A are their accelerations.

We still do not have an operational definition of mass, so the above rule can be
reformulated as follows: it is possible to assign, to every body A, a number mA

so that in every situation in which there are only two bodies A and B, we have
mB · ~aB|A = −mA · ~aA|B. How can we check this possibility experimentally?

How to check the third law? One thing we can check right away: that the
vectors ~aA|B and ~aB|A have the same direction.

Since these two vectors have the same direction, we can define their ratio

rA|B
def
=
~aB|A
~aB|A

as a real number for which ~aB|A = rA|B ·~aA|B. According to the above

formula, this (observable) ratio has the form rA|B = −mA

mB

.

So, the question of how to reformulate the third law in operational terms can
be described as follows:

� for every two bodies A and B, we can experimentally determine the ratios
rA|B;

� we want to check whether there exist values mA for which rA|B = −mA

mB

for

all pairs (A,B).

One can easily see that if such values mA exist, then for every three bodies A,
B, and C, we have rA|C = −rA|B · rB|C . Vice versa, if this property is satisfied,
then we can find appropriate mA: for example, we can fix some object A0 and then
take mA = rA|A0. Indeed, in this case, for C = A0, we have rA|A0 = −rA|B · rB|A0,

i.e., mA = −rA|B ·mB and thus, rA|B = −mA

mB

.

Comment. An additional implicit assumption behind Newton’s physics is that, in
general, the body mass does not change with time. To be more precise, it may
change – e.g., for a rocket flying to the Moon – but this is because the original
rocket consists of two parts: the rocket itself and the fuel. Each part retains its
mass, but the parts become separated as the fuel flies away.

This constancy of mass is what separates Newton’s mechanics from special
relativity, where a body’s mass changes with the body’s speed v as m =

m0√
1− v2

c2

,

where c is the speed of light.

Straightforward interpretation of Newton’s laws. Thus, the straightforward
interpretation of Newton’s laws is as follows.
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� If the body A is the only body in the world, then its acceleration is equal to
0: ~aA = 0.

� For every body A, its acceleration ~aA is uniquely determined by the positions,
velocities, and orientations of this body A and of all other bodies.

� Let ~aA|B denote the acceleration of the body A in the situation when the only
other body present is body B. In this case:

– for every two bodies A and B, the vectors ~aA|B and ~aB|A are collinear,
i.e., ~aB|A = rA|B · ~aA|b for some scalar rA|B;

– for every three bodies A, B, and C, we have rA|C = −rA|B · rB|C .

3. Reformulating Newton’s Laws in Operational Terms: An
Additional Property – Additivity of Forces

The above reformulation is rather weak. One can see that in this reformulation,
the first and the third laws are meaningful, while the second law – which is
usually portrayed as the main law of Newton’s physics – practically disappears: it
is reduced simply to determinism.

So, how did Newton make predictions? If this is the case, if the second law
does not have any serious meaning, then how come Newton succeeded in getting
so many observable predictions out of his laws? Yes, he used a specific formula for
the gravity force, but this is not sufficient: this would be sufficient for situations
when we have only two bodies, but Newton also analyzed situations with three or
more bodies. How did he do it?

Enter additivity of forces. In his analysis, Newton also used another property, a
property which he did not explicitly formulate as one of his laws, but which is very
important for making predictions: the implicit property of additivity of forces.
Namely, he assumes that in the presence of several bodies, a force acting on a
given body A is equal to the sum of the forces coming from all these bodies.

In precise terms, the force ~FA|B,...,C that bodies B, . . . , C exert on body A is
equal to the sum of the forces ~FA|B, . . . , ~FA|C that the body A would experience
in the presence of only one other body B, . . . , or C:

~FA|B,...,C = ~FA|B + . . .+ ~FA|C .

Comment. This additivity property is sometimes explicitly mentioned as an impor-
tant part of the second Newton’s Law – for example, it is listed as such on the
Wikipedia page on Newton’s laws – but Newton never explicitly formulated this
property.

Let us reformulate additivity in operational terms. According to the second
Newton’s law, ~FA|B,...,C = mA · ~aA|B,...,C , ~FA|B = mA · ~aA|B, . . . , ~FA|C = mA · ~aA|C ,
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where ~a are corresponding accelerations. Substituting these expressions into the
above formula and dividing both sides by the common factor mA, we get the desired
reformulation.

Operational reformulation of additivity of forces. The acceleration ~aA|B,...,C
that bodies B, . . . , C exert on body A is equal to the sum of the accelerations ~aA|B,
. . . , ~aA|C that the body A would experience in the presence of only one other body
B, . . . , or C:

~aA|B,...,C = ~aA|B + . . .+ ~aA|C .

Comment. In the appendix, we describe how to tell when a function of many
variables can be represented as a sum of such pairwise expressions.

4. What We Can Conclude Based on Additivity of Forces

First conclusion: momentum is preserved. For each body A, due to additivity,
we have mA · ~A =

∑
B 6=A

~FA|B. If we add up all both sides corresponding to all the

bodies A, we will be able to conclude that∑
A

mA · ~aA =
∑
A

∑
B

~FA|B.

In the right-hand side of this formula, each pair of objects (A,B) occurs twice:
as ~FA|B and as ~FB|A. Due to the third Newton’s law, ~FA|B + ~FB|A = 0. Thus,∑
A

∑
B

~FA|B = 0 and, therefore,
∑
A

mA · ~aA = 0. Each acceleration ~aA is a time

derivative of the corresponding velocity ~vA. Thus,

d

dt

(∑
A

mA · ~vA

)
= 0.

In other words, the momentum
∑
A

mA · ~vA does not change with time.

Comments.

� An alternative derivation of the momentum preservation property is given
in [2].

� It is worth mentioning that the momentum is preserved in special relativity as
well, the difference is that in special relativity theory, as we have mentioned
earlier, the mass changes when velocity changes.

Second conclusion: additivity of mass. Let us assume that we have two bodies
A and B travelling together, with the same acceleration ~a. We can view this
situation in two different ways:

� as two different bodies A and B each travelling with the acceleration ~a, or
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� as a single composite body AB travelling with an acceleration ~a.

In the first case, for the body A, the second Newton’s law has the form mA ·~a = ~FA,
where, due to additivity, the force ~F is the sum of two components: the force ~FA|B
coming from the body B and the force ~FA|X coming from all other bodies X:
mA · ~a = ~FA|B + ~FA|X . Similarly, we have mB · ~a = ~FB|A + ~FB|X . By adding
these two formulas and by taking into account that, due to the third Newton’s law,
~FA|B + ~FB|A = 0, we conclude that

(mA +mB) · ~a = ~FA|X + ~FB|X .

On the other hand, in the second interpretation, we have a single composite
body AB of some mass mAB which is accelerating due to forces ~FA|X and ~FB|X
acting on this composite body. Due to additivity of forces, the overall, force acting
on the composite body AB is equal to ~FA|X + ~FB|X . Thus, for this composite body,
the second Newton’s Law takes the form

mAB · ~a = ~FA|X + ~FB|X .

By comparing the formulas corresponding to the two possible interpretation of
this situation, we conclude that

mAB = mA +mB.

In other words, mass is additive in the sense that the mass of the composite body
is equal to the sum of the masses of its components.

Comment. This argument is similar to the one given in [2].

Deriving laws of gravity (almost). Since one of the main original successes of
Newton’s physics was the description of the motion caused by the gravitational
forces, it is worth mentioned that the formula for the gravitational force can be –
almost uniquely – determined based on additivity.

Indeed, the value of the gravitational force ~FA|B, by definition, is determined
only by the masses of the bodies mA and mB and by the mutual location ~r of these
two bodies: ~FA|B = ~F (mA,mB, ~r) for some vector-valued function ~F .

If the body B consists of two parts B1 and B2 of masses, correspondingly, m1

and m2, then we can view this situation in two different ways:

� we can treat the body B as two different bodies B1 and B2 each affecting the
body A, or

� we can treat B as a single body affecting the body A.

In the first case, due to additivity of forces, the force acting on the body A is equal
to the sum

~FA|B = ~FA|B1 + ~FA|B2 = ~F (mA,m1, ~r) + ~F (mA,m2, ~r).
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On the other hand, in the second interpretation, due to the additivity of masses
mB = m1 +m2, this same force has the form

~FA|B = ~F (mA,mB, ~r) = ~F (mA,m1 +m2, ~r).

By comparing the formulas corresponding to the two possible interpretation of this
situation, we conclude that

~F (mA,m1 +m2, ~r) = ~F (mA,m1, ~r) + ~F (mA,m2, ~r).

In other words, for every mA and ~r and for each spatial component i, the function

f(m)
def
= Fi(mA,m,~r) satisfies the additivity property f(m1 +m2) = f(m1)+f(m2).

One can easily see that the only continuous function with this property is a

function f(m) = k ·m, where k def
= f(1). Indeed, this is trivially true for m = 1.

For m =
1

n
, we have

f(1) = f

(
1

n

)
+ . . .+ f

(
1

n

)
(n times),

so f(1) = n · f
(

1

n

)
and f

(
1

n

)
=

1

n
· f(1) = k ·m.

For rational m =
p

n
, we have

f(m) = f
(p
n

)
= f

(
1

n

)
+ . . .+ f

(
1

n

)
(p times),

so

f(m) = f
(p
n

)
= p · f

(
1

n

)
= p · 1

n
· k =

p

n
· k = k ·m.

Since every real number can be represented as a limit of rational numbers, and
f(m) = k ·m for all rational numbers, continuity implies that f(m) = k ·m for all
values m. Thus,

~F (mA,mB, ~r) = ~f(mA, ~r) ·mB,

where we denoted ~f(mA, ~r)
def
= ~F (mA, 1, ~r).

Similarly, if the body A consists of two parts A1 and A2 with masses m1 and
m2, then we can view this situation in two different ways:

� as two different bodies A1 and A2 both affected by B, or

� as a single composite body A affected by the body B.

In the first case, due to the additivity of forces, the overall force acting on the
body A is equal to ~F (m1,mB, ~r) + ~F (m2,mB, ~r). In the second case, this force is
equal to ~F (mA,mB, ~r) = ~F (m1 + m2,mB, ~r). By comparing these two expressions
for the same force, we conclude that

~F (m1 +m2,mB, ~r) = ~F (m1,mB, ~r) + ~F (m2,mB, ~r).
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Substituting the expression ~F (mA,mB, ~r) = ~f(mA, ~r) · mB into this formula and
dividing both sides of the resulting equality by mB, we conclude that

~f(m1 +m2, ~r) = ~f(m1, ~r) + ~f(m2, ~r).

Thus, similar arguments lead to ~f(mA, ~r) = mA · ~g(~r). Hence,

~F (mA,mB, ~r) = mA ·mB · ~g(~r)

for some function ~g(~r).

Comment. It is worth mentioning that for this formula, the first Newton’s law is
automatically satisfied: when mB = 0, we have ~F = 0.

Deriving laws of gravity (cont-d). If we require that this expression be rotation-
invariant, we can then conclude that ~g(~r) = ~r · h(r) for some function h(r), where

r
def
= |~r| is the distance between the two bodies.

Comment. For this formula, the third Newton’s law is also automatically satisfied,
since here, ~FB|A = mB ·mA · (−~r) · h(r) = −~FA|B.

Deriving laws of gravity (final part). Finally, if we require that the dependence
be scale-invariant, i.e., that a re-scaling of distances r → λ · r (e.g., changing from
meters to centimeters) will lead to the same formula for the force, but maybe after
an appropriate re-scaling of force. In precise terms, this means that for every λ,
there exists a value a(λ) for which h(λ · r) = a(λ) · h(r).

If we first re-scale by a factor of λ1 (i.e., go from r to r′ = λ1 · r), and then by a

factor of λ2 (i.e., go from r′ to r′′ = λ2 · r′ = λ · r, where λ def
= λ1 · λ2), then we get

h(λ · r) = h(λ2 · (λ1 · r)) = a(λ2) · h(λ1 · r) = a(λ2) · a(λ1) · h(r).

On the other hand, we have h(λ·r) = a(λ)·h(r). By comparing these two formulas,
we conclude that

a(λ) = a(λ1 · λ2) = a(λ1) · a(λ2).

This equation is similar to the one that we had before, except that now we have
multiplications instead of additions. We can use ln(x) to reduce multiplication to
addition. By taking logarithms of both sides, we get

`(λ1 · λ2) = `(λ1) + `(λ2),

where we denoted `(x)
def
= ln(a(x)). For the function A(X)

def
= `(exp(X)) =

ln(a(exp(X))), we have `(x) = A(ln(x)), so the above formula takes the form

A(ln(λ1 · λ2)) = A(ln(λ1)) + A(ln(λ2)).

Here, ln(λ1 · λ2) = x1 + x2, where xi
def
= ln(λi), so the formula takes the additivity

form A(x1 + x2) = A(x1) + A(x2).
We already know that in this case, A(x) = α · x for some x. Thus, `(x) =

A(ln(x)) = α · ln(x), and a(x) = exp(`(x)) = exp(α · ln(x)) = xα. Now, from
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h(λ · r) = a(λ) · h(r), when r = 1, we get h(x) = h(1) · xα, i.e., h(r) = C · rα for
some values C and α. Therefore,

~F (mA,mB, ~r) = C ·mA ·mB · ~r · rα.

Comments.

� This is almost Newton’s law describing gravity. To get exactly the Newton’s
law, we need to specify α = −3.

� Similarly, if we define electrostatic forces as depending only on the additive
charges qA and qB, then we get ~FA|B = D · qA · qB · ~r · rβ for some values D
and β.
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A. Formalizing Additivity of Forces: How to Tell When
a Function of Several Variables is Equal to the Sum of Pair-
wise Functions

Definition. Assume that the integers from 1 to n are divided into several groups
A, . . . , B. For a tuple x1, . . . , xn and for a group A, by xA, we denote a sub-tuple
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consisting of all the values xi with i ∈ A. We say that a function f(x1, . . . , xn)
is a sum of pairwise functions if

f(x1, . . . , xn) =
∑
A,B

fAB(xA, xB)

for some functions fAB.

Proposition. When a function f is three times differentiable, then f is a sum of

pairwise functions if and only if
∂3f

∂xi∂xj∂xk
= 0 whenever i, j, and k belong to

different groups.

Proof. Let us first prove that if f is a sum of pairwise functions, then the
corresponding third order derivatives are equal to 0. Without losing generality, let
us assume that i ∈ A, j ∈ B, and k ∈ C. Let us first differentiate the function
f with respect to xi and xj. The derivative of the sum is equal to the sum of the
derivatives. Of all the pairwise terms forming f , only the term fAB(xA, xB) can
depend both on xi and xj: all other terms either do not depend on xi for i ∈ A

or do not depend on xj for j ∈ B, and thus, the second derivatives
∂2

∂xi∂xj
of all

other terms are equal to 0. Thus,
∂2f

∂xi∂xj
=

∂2fAB
∂xi∂xj

. The function fAB depends

only on the variables x` with ` ∈ A or ` ∈ B. Thus, its second derivative also only
depends on these variables, and cannot depend on xk for k ∈ C (for which k 6∈ A

and k 6∈ B). So, indeed,
∂3f

∂xi∂xj∂xk
= 0.

Let us now prove that, vice versa, if all the corresponding third derivatives of
the function f(x1, . . . , xn) are equal to 0, then the function f(x1, . . . , xn) is a sum
of pairwise functions. This proof is based on the fact that if we know the partial

derivative
∂g

∂x1

, of a function g(x1, . . . , xn), then we can represent the function

g(x1, . . . , xn) as

g(x1, x2, . . . , xn) = g(0, x2, . . . , xn) +

∫ x1

0

∂g

∂x1

(t, x2, . . . , xn) dt.

Similarly, if we know the partial derivatives with respect to x1, . . . , xk, then we
can write

g(x1, . . . , xk, xk+1, . . . , xn) = g(0, . . . , 0, xk+1, . . . , xn)+

+(g(x1, 0, . . . , 0, xk+1, . . . , xn)− g(0, 0, . . . , 0, xk+1, . . . , xn))+

+(g(x1, x2, 0, . . . , 0, xk+1, . . . , xn)− g(x1, 0, 0, . . . , 0, xk+1, . . . , xn)) + . . .+

+(g(x1, . . . , xk−1, xk, xk+1, . . . , xn)− g(x1, . . . , xk−1, 0, xk+1, . . . , xn)) =

= g(0, . . . , 0, xk+1, . . . , xn) +

∫ x1

0

∂g

∂x1

(t, 0, . . . , 0, xk+1, . . . , xn) dt+
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+

∫ x2

0

∂g

∂x2

(x1, t, 0, . . . , 0, xk+1, . . . , xn) dt+ . . .+

+

∫ xk

0

∂g

∂xk
(x1, x2, . . . , xk−1, t, xk+1, . . . , xn) dt.

We have already mentioned that from the fact that f is a sum of pairwise

functions, it follows that for all i ∈ A and all j ∈ B, the partial derivative
∂2f

∂xi∂xj
depends only on the variables xA and xB. This second partial derivative has the

form
∂g

∂xi
, where g def

=
∂f

∂xj
. Thus, we can get the above integral representation of

the function g =
∂f

∂xj
. In this representation, the first term g(0, . . . , 0, xk+1, . . . , xn)

does not depend on the variables xA, while all other terms depend only on xA and
xB. Thus, for every j ∈ B, we have

∂f

∂xj
= f1(xB, xC , . . .) + f2(xA, xB)

for appropriate functions f1 and f2. Now that we have this information about the
partial derivatives of the function f with respect to variables xB, we can apply the
integral formula once again and get

f(xA, xB, xC , . . .) = F1(xA, xC , . . .) + F2(xB, xC , . . .) + F3(xA, xB)

for appropriate functions Fi.
When we only have three groups of variables, we have the desired representa-

tion of the function f as a sum of pairwise functions.
When we have more than three groups of variables, we can continue our de-

composition. For the functions F2 and F3, the second order derivatives with respect

to xA and xC are equal to 0, so
∂2f

∂xA∂xC
=

∂2F1

∂xA∂xC
. The left-hand side depends

only on xA and xC , thus the right-hand side also only depends on xA and xC . Thus,
similarly to the above, we can conclude that

F1(xA, xC , xD, . . .) = F11(xA, xD, . . .) + F12(xC , xD, . . .) + F13(xA, xC).

A similar representation is possible for F2, so we have

f(xA, xB, xC , xD, . . .) = F11(xA, xD, . . .) + F12(xC , xD, . . .) + F13(xA, xC)+

+F21(xB, xD, . . .) + F22(xC , xD, . . .) + F23(xB, xC) + F3(xA, xB).

By combining F12 and F22 together into a single function F4, we get

f(xA, xB, xC , xD, . . .) = F11(xA, xD, . . .) + F4(xC , xD, . . .) + F13(xA, xC)+

+F21(xB, xD, . . .) + F23(xB, xC) + F3(xA, xB).
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If we have four groups of variables, then the proposition is proven, otherwise
we can use the same reduction once again, etc. After each reduction, we have
functions depending on one fewer groups of variables, so eventually, this reduction
will stop and we will get the desired representation. The proposition is proven.
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Аннотация. Ньютоновская механика является одной из самых успешных тео-
рий в истории науки; её успех базируется на трёх законах Ньютона. На первый
взгляд, законы Ньютона, которые описывают соотношения между массой, силой
и ускорением, являются очень ясными и простыми. Однако ситуация становится
несколько двусмысленной, если учесть, что понятия массы и силы не определе-
ны на практике. В данной статье мы рассмотрим практический смысл законов
Ньютона.
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