Математические структуры и моделирование 2014. № 4(32). С. 105–111

МОДЕЛЬ СЕЙСМИЧЕСКОГО ИМПУЛЬСА, ВОЗНИКАЮЩЕГО ПРИ ГИДРАВЛИЧЕСКОМ РАЗРЫВЕ ПЛАСТА

Е.В. Рабинович

профессор, д.т.н., e-mail: erabinovich1952@gmail.com **К.С. Ганчин** студент, e-mail: k.lemmini@gmail.com **И.М. Пупышев** к.ф.-м.н., e-mail: iluxa1@ngs.ru **Г.С. Шефель** к.ф.-м.н., e-mail: ligr1x@yahoo.com

Новосибирский государственный технический университет,

факультет автоматики и вычислительной техники

Аннотация. Представлены результаты экспериментального и теоретического исследования оригинальной модели сейсмического импульса. Предложенный импульс возникает при формировании трещины в процессе гидравлического разрыва пласта. Приведено сравнение с известными сейсмическими импульсами.

Ключевые слова: сейсмический импульс, гидравлический разрыв пласта.

Введение

Гидравлический разрыв пласта (ГРП) является эффективным средством увеличения темпов отбора нефти из продуктивных пластов и более полной выработки месторождения. Он создаёт в пласте высокопроводящий канал для поступления в скважину дополнительной нефти.

Суть ГРП заключается в том, что в забое скважины путём закачки жидкости создаётся давление, превышающее горное давление. В породе продуктивного пласта происходит мгновенный разрыв, и образуются трещины (поверхности фрактального вида). Продолжение закачки влечёт увеличение размеров зоны трещиноватости. Вместе с жидкостью в трещины пласта транспортируется расклинивающий агент, который после снятия давления удерживает трещины в закреплённом раскрытом состоянии.

Проведение ГРП сопряжено с риском дорогостоящего гидродинамического контакта скважин. Снижение этого риска осуществляется при помощи мониторинга ГРП, который на основе обработки возникающих в процессе ГРП сейсмических сигналов позволяет следить за пространственным развитием зоны трещиноватости. Мониторинг даёт информацию для управления основными параметрами ГРП — объёмом и темпами закачки жидкости в пласт. Для мониторинга ГРП в [1–4] предложен оригинальный метод локации точечных источников акустических колебаний, возникающих в кратковременные моменты образования трещин в породе продуктивного пласта. Применение метода обеспечивает подавление искусственных и естественных помех, возникающих из-за нелинейности распространения сейсмического сигнала и резонансных свойств породы коллектора.

Метод основан на использовании антенны, которая представляет собой сейсмостанцию с 48 сейсмоприёмниками, расположенными в двух пересекающихся направлениях. Антенна сканирует узлы трёхмерной сетки, виртуально наложенной на зону трещиноватости. Каждый сейсмоприёмник антенны регистрирует принятый сейсмический сигнал в виде временной функции — исходной сейсмограммы. Для каждого узла виртуальной сетки локации вычисляется суммарная сейсмограмма, накапливающая вклад всех исходных сейсмограмм.

На интервалах заданной длительности T суммарная сейсмограмма y(t) рассматривается как колебание, имеющее вид суммы известного квазидетерминированного сейсмического импульса s(X,t) и помехи n(t) с априорно известными вероятностными характеристиками:

$$y(t) = \delta s(X, t) + n(t), 0 \le t \le T.$$

Здесь случайная величина δ , принимающая только два значения 1 или 0, X — текущая координата сейсмического импульса.

Локация точечного источника сейсмического импульса осуществляется при помощи алгоритма оптимального обнаружения сигналов, который по значению параметра δ оценивает факт наличия ($\delta = 1$) или отсутствия ($\delta = 0$) импульса s(X,t) в конкретной реализации y(t) на интервале T.

Узлы сетки, которым сопоставлен точечный источник сейсмического импульса, используются для построения динамической модели зоны трещиноватости продуктивного пласта. Эта модель — тонкий слой неравномерной толщины в объёме коллектора пласта — результат мониторинга ГРП, определяющий положение, размеры и динамику развития трещин.

Локация точечного источника сейсмического импульса является типичной задачей обнаружения сигнала на фоне помех. Для её решения необходима информация о виде функции s(X,t).

С целью определения формы и параметров сейсмического импульса s(X,t) было проведено экспериментальное исследование акустического колебания, возникающего при разрушении образца породы коллектора. Предложена модель сейсмического импульса, возникающего при образовании трещины коллектора в процессе проведения ГРП. Проведено её сравнение с известными моделями сейсмических импульсов.

Результаты исследования модели сейсмического импульса, возникающего при образовании трещины в продуктивном пласте, приведены в данной работе.

Рис. 1. Акустический импульс

1. Экспериментальное моделирование акустического импульса

Эксперимент состоял в записи звуковых сигналов, возникающих при разрушении (путём раздавливания прессом) кернов образца породы, составляющей продуктивный пласт реального месторождения углеводородов.

Разрушение производилось с помощью механического пресса, запись сопутствующих звуковых сигналов осуществлялась в монофоническом режиме с дискретизацией 8 кГц.

На рис. 1 в верхнем окне красным цветом выделен акустический сигнал разрушения керна. Во втором окне — сигнал в увеличенном масштабе представляет собой радиоимпульс — высокочастотное колебание, модулированное по амплитуде низкочастотным импульсом (огибающей). В третьем окне рис. 1 изображена низкочастотная огибающая акустического радиоимпульса. Понятно, что погрешности проведения эксперимента, его адекватность процессам, происходящим в продуктивном пласте под землёй, дают возможность только весьма приблизительного определения формы и параметров сейсмического импульса s(X,t).

2. Волновая модель сейсмического импульса

При мониторинге ГРП в коллекторе продуктивного пласта наблюдается сложное сочетание процесса развития магистральной трещины и сейсмических событий, создающих помехи мониторингу.

Развитие магистральной трещины можно считать последовательностью актов трещинообразования, распространяющейся по направлениям минимальной прочности породы коллектора. В каждом акте происходит разрыв породы коллектора в зоне повышенных напряжений у острия трещины.

Скачкообразный разрыв породы сопровождается возбуждением акустического колебания в локализованном пространстве острия трещины. Такое импульсное колебание (треск) порождает, при наличии дисперсии волн в породе, волновой пакет — сейсмическую волну, огибающая которой локализована в пространстве.

Поскольку размеры зоны разрыва породы коллектора много меньше расстояния до сейсмоприёмников, то с высокой достоверностью разрыв можно считать точечным источником [5] сейсмических импульсов в пространстве продуктивного пласта. Сейсмические импульсы распространяются с известной скоростью в конкретной среде и регистрируются на поверхности Земли сейсмоприёмниками.

Сейсмический импульс (волновой пакет) является решением соответствующего нелинейного эволюционного уравнения, описывающего напряжённодеформированные состояния породы продуктивного пласта. Обычно решения таких уравнений ищутся в виде нелинейных волн стационарного профиля, в которых зависимость от координаты и времени определяется единым выражением (X - Vt), где V — групповая скорость волны, движущейся в направлении X.

Исходя из формы акустического импульса, полученного при экспериментальном моделировании, и решений известных нелинейных эволюционных уравнений, была предложена модель сейсмического импульса в виде

$$s(X,t) = cA \frac{\cos(kX - \omega t + \theta)}{\operatorname{ch}\left(\frac{X - Vt}{T_0}\right)},$$

где с — коэффициент пропорциональности, зависящий от вида эволюционного уравнения, A и T_0 — амплитуда и длительность импульса, $X = x - x_0$ — расстояние между сейсмоприёмником и источником импульса, $\omega = kv$ — угловая частота, которая равна произведению волнового числа k и фазовой скорости волны v, θ — фазовый сдвиг волны.

Спектр импульса вычисляется по формуле

$$s(X,\Omega) = \int_{-\infty}^{\infty} s(X,t) \exp(-i\Omega t) dt =$$
$$= \frac{\pi cA}{2V} \left(\frac{\exp\left(-i\left(\left(k - \frac{\omega}{V}\right)X + \theta\right)\right)}{\operatorname{ch}\left(\frac{\pi T_0(\omega + \Omega)}{2V}\right)} + \frac{\exp\left(i\left(\left(k - \frac{\omega}{V}\right)X + \theta\right)\right)}{\operatorname{ch}\left(\frac{\pi T_0(\omega - \Omega)}{2V}\right)} \right) \exp\left(\frac{-i\Omega X}{V}\right)$$

его энергия

$$E = \int_{-\infty}^{\infty} s^2(X, t) dt = \frac{c^2 A^2}{V} \left(\pi T_0 \frac{\omega}{V} \frac{\cos\left(2\left(k - \frac{\omega}{V}\right)X + \theta\right)}{\sin\left(\pi T_0 \frac{\omega}{V}\right)} + 1 \right).$$

В зависимости от дисперсионных свойств породы продуктивного пласта рассмотрены решения трёх эволюционных уравнений.

Дисперсия волн отсутствует. Решение — волновой пакет стационарного профиля волнового уравнения с параметрами: $c = A = 1, T_0 = 0.049\omega, V = v = \pm 1.$

Дисперсия волн слабая. Решение — солитон модифицированного уравнения Кортевега-де Фриза с параметрами $c = \sqrt{24}, A = \frac{1}{T_0}, V = 3k^2$.

Дисперсия волн сильная. Решение — солитон нелинейного уравнения Шрёдингера с параметрами: $c = \sqrt{2}, A = \frac{1}{T_0}, V = 2k$.

3. Сравнение моделей сейсмических импульсов

В сейсморазведке для приближения реальных сейсмограмм используется несколько разных моделей сейсмических импульсов:

- 1. Берлаге: $w(t) = t^n \exp(-bt) \sin(\omega t)$.
- 2. Гельфанда: $w(t) = \exp(-bt^2)\sin(\omega t)$.
- 3. Затухающей синусоиды: $w(t) = \exp(-bt)\sin(\omega t)$.
- 4. Пузырёва: $w(t) = \exp(-\frac{\omega}{\pi}t)^2 \sin(\omega t)$.
- 5. Риккера: $w(t) = (1 2(\frac{\omega}{2}t)^2) \exp(-(\frac{\omega}{2}t)^2).$

На рис. 2 для сравнения приведены нормированные временные формы и частотные спектры перечисленных выше моделей сейсмических импульсов и предложенной модели в виде солитона нелинейного уравнения Шрёдингера. Для сравнения несущая частота $\frac{\omega}{2\pi}$ импульсов выбрана равной 1 Гц. Значения дополнительных параметров импульсов:

- 1. b = 5, n = 6.
- 2. b = 3.
- 3. b = 2.

Предложенная модель благодаря подбору фазового сдвига *θ* может принимать вид нуль-фазовых (импульсы 1, 3 и 5) и минимально-фазовых (импульсы 2 и 4) сейсмических импульсов.

Рисунки показывают высокое сходство предложенной и всех остальных моделей сейсмических импульсов. Вероятно, что после всестороннего исследования удастся доказать возможность использования предложенной модели в качестве обобщающей модели сейсмических импульсов.

Рис. 2. Сравнение известных и предложенного сейсмических импульсов

4. Заключение

Используя экспериментальное моделирование и метод математической аналогии, была предложена и опробована модель сейсмического сигнала, возникающего при образовании трещин коллектора в результате ГРП. Модель может быть использована для сред с разным уровнем дисперсии волн. Модель является достаточно универсальной, так как хорошо приближает известные модели сейсмических импульсов.

Литература

- 1. Рабинович Е.В., Туркин А.С., Новаковский Ю.Л. Наземная локация микросейсмических сигналов для мониторинга гидравлического разрыва пласта // Доклады ТУСУР, 2012. № 1(25). Ч. 1. С. 104–112.
- 2. Рабинович Е. В., Туркин А.С., Новаковский Ю.Л. Спектральная фильтрация сейсмических сигналов, возникающих при гидравлическом разрыве пласта. // Доклады ТУСУР, 2013. № 2(28). С. 175–179.
- 3. Рабинович Е.В., Вайнмастер П.И., Новаковский Ю.Л. Пространственная фильтрация сейсмических событий, возникающих при гидравлическом разрыве пласта. // Автоматика и программная инженерия, 2013. № 1(3). С. 53–60.
- 4. Рабинович Е.В., Вайнмастер П.И., Новаковский Ю.Л., Туркин А. С. Моделирование зоны трещиноватости, возникающей при гидравлическом разрыве пласта // Автометрия, 2014. № 4. С. 24–33.

5. Шнеерсон М.Б. Наземная невзрывная сейсморазведка. М.: Недра, 1988. 238 с.

THE MODEL OF THE SEISMIC PULSE ARISING AT HYDRAULIC FRACTURING

E.V. Rabinovich

Professor, Doctor of Technical Sciences, e-mail: erabinovich1952@gmail.com **K.S. Ganchin** Student, e-mail: k.lemmini@gmail.com **I.M. Pupyshev** Ph. D. (Math), e-mail: iluxa1@ngs.ru **G.S. Shefel** Ph. D. (Math), e-mail: ligr1x@yahoo.com

Novosibirsk State Techincal University

Abstract. The results of experimental and theoretical research of the original seismic pulse model are presented. The under study seismic pulse is arising at formation of a fracture in the process of hydraulic fracturing. The comparison with known seismic wavelets is shown.

Keywords: seismic pulse model, hydraulic fracturing.