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Abstract. We prove that if R is an associative unital ring and the elementary
group E,(R) for n > 3 is linear over a field k of characteristic zero, then R
has a finite index ideal which is linear over k. We prove that if A is an infinite
integral domain of characteristic p > 0, then for every natural n the ring of
Witt vectors W,,(A) is not virtually linear over any field. However, somewhat
paradoxically, for any field & and any m,n > 1 the group GL,, (W, (k)) is
linear over k.

Keywords: linear group, field, affine algebraic group, associative ring, Witt
ring.

Introduction

This paper is a complement to the studies reported earlier by M. Kassabov and
M. Sapir [8]. Recall that a general linear group GL,,(R) over (always an associative
and unital) ring R consists of all invertible n x n matrices over R with operations
of matrix multiplication and inversion. A matrix (or linear) group over R is an
abstract group embeddable into GL,(R) for some n > 1. Similarly, a ring A is
linear over R if it can be embedded into the ring of n x n matrices M,, (R) over the
ring R for some n > 1. A fundamental question in group theory is to determine
whether a given group G is linear over some (or certain) field or not. Here we
study the case of the elementary group G = E, (R) over a ring R. Recall that
E,.(R) is the subgroup of GL,(R) generated by all elementary (n x n)-matrices
xij(r) =Id+re;; (re R, 1 <i# j <n), where ¢; is a standard matrix unit with
1 in the (7, j)-position, and O’s elsewhere. The group E,(R) is certainly linear over
R, so the crux of the matter is whether or not E,,(R) is linear over some field. Our
main result is

Theorem 1. Let R be an associative unital ring. If group E,(R) for n > 3 is
linear over a field k of characteristic zero, then R is almost linear over k, i.e.
R has a [inite index ideal I , which is linear over k .

The theorem should have been known for many years, but it has been proved
only very recently in case k£ = C [8]. Informally, our theorem can be considered as
a manifestation of the Lefschetz principle applied to the theorem by Kassabov and
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Sapir. Recall that the "Lefschetz principle” states that any sentence in the first-
order language of fields which is true for complex numbers is also true for every
algebraically closed field of characteristic 0. The linearity of E,,(R) is definitely not
a first-order sentence in the language of fields (although we were not able to prove
this).

The study of isomorphic representability of infinite groups by matrices was
initiated by Mal’cev (1940) in a paper in which he found the conditions for the
representability of abelian and periodic groups (over a field) and proved a local
theorem for matrix representability of bounded degree [10]. The state of art during
the period 1966-1977 is surveyed in [13,14]. A lot is known about isomorphisms
between various matrix groups over (mostly commutative ) rings; see [17, 22].
See also [3,4,6]. Moody, Long and Paton, Krammer, Bigelow made a remarkable
progress in the linearity problem for braid groups [9,16,19,20] . For the recent
studies see [21,23].

In the proof of Theorem 1 in [8, Thm.1] (in case £ = C) a nice topological
argument plays a central role. Namely, the set Z = 1+ Rey,, is an abelian subgroup
of E,(R) and at the same time Z has a natural ring structure isomorphic to
R. Suppose E,(R) is linear over C . Identifying E,(R) with its image in some
GLy(C), consider Z — the closure of Z in the Zariski topology on GLy(C). The
first observation is that Z possesses the structure of an associative algebraic ring
with unit, which extends the R-ring structure on Z . The addition operation is
given by the matrix multiplication on GLx(C). The Zariski connected component

of the additive group Z' is a two-sided ideal in Z. The key fact is that (70,—|—)
is isomorphic to C7 for some natural m. Here the authors of [8] apply topological

argument, calculating the fundamental group of <70, +>.

In this paper, we avoid the reference to topology. With some small amount of

the theory of algebraic groups, we show that 7 isa unipotent group (see Section
1.). Moreover, to prove unipotence, we even do not use linearity of E,(R) - it is
enough to make use of linearity of the 2-step nilpotent Heisenberg group UT3(R).

Clearly, if R is linear over a field, then the group E, (R) also is linear over the
same field for any n > 2. It is stated in [8, (Thm.1)] that the conclusion is true
even il R is virtually linear over a field. Kassabov and Sapir also manage to build
an example of a "strange” commutative ring R which is not linear over any field
(even virtually) but for which E, (R) is linear over field. We study their example
from the scientific point of view and we show that any truncated Witt ring W, (k)
satisfies the above property for every natural n.

1. The Heisenberg group over a ring

For any associative unital ring R and any natural n > 2 let UT,,(R) denote the
upper uni-triangular group over R of the size n x n. By this we mean the group
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of n X n matrices

UT,(R) =

o o o =
Iny

In case n =3 we have

1 R R
0 0 1

and the matrix multiplication looks like this:

1 2 =z 1 2 2 1 z+2 oy 42472
01 vy 01 ¢y =10 1 v+ ;
0 01 0 0 1 0 0 1
where the entries x, ..., 2 are arbitrary elements of R. Identifying the first two

matrices with the raws (z,y, z), (2/,v/,2'), we can rewrite the multiplication law
as follows:
(v,y,2) (¢, 2 )= (@ +2",y+v, 2y + 2+ 7).

The associativity can be easily verified, the triple (0,0,0) is an identical element
and the inverse is given by

(I, Y, Z>71 = (—l’, —Y, Ty — Z) :
We call U= UTj3(R) the Heisenberg group over R.

Lemma 1. The subgroup Z = (0,0, R) is the center of U and at the same
time the commutator subgroup of U. Moreover, the commutator map U x U — Z
is surjective.

Proof. As usual, we denote by [g, h] the group commutator g~ 'h~1gh of the group
elements g, h. It follows from the formula

(z,9,2)(0,0,2") = (0,0,2") (z,y,2) = (0,0, 2 + 2)
that Z lies in the center. On the other hand, if (z,y, 2) is in the center, then
[(I,y,z),(l,n,O)]Z(O,O,x—ny)z() (1)

for all natural n. It follows from x —y = 0,2 — 2y = 0 that x = 0,y = 0 and
thus (z,y,2) € Z. The commutator formula

[<x7 y7 Z)? ('ZLJ7 y’? Z/)] = (07 07 :Uy, - l'/y) (2)
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shows that the commutator subgroup [U, U] lies in Z. Setting z = 1,2/ =0 in
the above formula, we obtain

[(1,y,2) (0,%,2)] = (0,0,4"), (3)

which shows that Z C [U,U] and finally Z = [U, U].
|

Hence U is a 2-step nilpotent group. The sets X = (R,0,0),Y = (0, R,0) are
abelian subgroups and XZ, XZ are normal abelian subgroups in U. We consider
Z as a ring isomorphic to R.

2. Abstract linear representations of the Heisenberg group

The main result of this section is

Theorem 2. Let R be a ring (associative, unital), k a perfect [ield, m >
> 3,n > 2 - the integers. Let p: UT,,(R) — GL,(k) be an (abstract) injective
homomorphism. Then for any i,j with j —i > 2, the closure of p(x;; (R)) in the
Zariski topology on GL, (k) is a virtually unipotent k-group.

We need some preliminaries for the proof.

A little portion of algebraic group theory ( [2,12]). Let K be an alge-
braically closed field. Let K [X] be a polynomial ring in variables Xj,..., X, over
K. By an affine variety we mean a subset A C K™ which is a set of zeroes of
some ideal in K [X] or equivalently it is of the form V(S) = {z € K" : f(z) =
=0,Vf € S},where S is any set of polynomials in n variables over K. We consider
the Zariski topology on K", n > 1 in which the closed sets are algebraic sets.

Let £ be a subfield of K. An algebraic set is k-closed if it is V(S) for some
S consisting of polynomials over k. The k-closed sets form a k-topology on K™
which is weaker than the original topology. If A is an arbitrary subset in K™ then
the set I (A) consisting of all polynomials vanishing on A form an ideal — the
annulator of A in K [X]| . We say that an algebraic set A is k-defined (or a k-set)
if I (A) can be generated by polynomials with coefficients in k. We shall also say
that A is a k-variety, and denote by k[A] the algebra of regular functions defined
over k. This is the quotient of the polynomials on K™ with coefficients in & by
its subideal of polynomials vanishing on A. One can clearly speak of regular maps
(over k) between k-varieties by examining the coordinate functions.

Recall that a field & is perfect if every irreducible polynomial over k has distinct
roots. If k is perfect then an algebraic set A is k-defined iff A = V (S) and S
consists of polynomials over & (see [12])).

An affine algebraic group G over K is an affine variety with group structure
given by regular functions. Equivalently it is a nonsingular part of an algebraic
set in M, (K) — the set of n x n matrices over K. For a k—group G we let
G(k) = GNGL, (k) be the set of k-rational points of G. We say also that G(k) is a
k-portion of G.
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An algebraic set A is irreducible if 7 (S) is a prime ideal. In terms of Zariski
topology A is irreducible if it is not empty and is not the union of two proper closed
subsets. The latter condition is equivalent to the requirement that each non-empty
open set be dense in A, or that each one be connected. Every algebraic set can
be decomposed into a finite union of irreducible subsets, called the components.
In case A is an algebraic group, the notions of irreducibility and connectivity are
equivalent. In what follows we use only the second term, to avoid confusion with
the concept of irreducibility in the sense of representation theory.

Jordan-Chevalley decomposition. Recall that a matrix u € M, (k) is called
unipotent if (u—1)" = 0. A matrix s € M,, (k) is semisimple if any s—invariant
subspace in k™ possesses an s—invariant complement subspace. In case of perfect
k this is equivalent to diagonalizibility of s over the algebraic closure k& [12, §
15.2.1]. The notions just introduced do not depend on the choice of a perfect field
k [12, § 15.1.5]. Also these notions are invariant under conjugation by matrices
from GL, (k).

If k is perfect then every matrix # € GL,(k) has a unique Jordan-Chevalley
decomposition x = z,x, where x4, z, € GL,(k), =4 is semisimple, z, is unipotent
and x,x, = x,xs [12, §15.3.3]. Moreover, z,,x, are the polynomials in x over k.
We call the components of = semisimple and unipotent ones. By Mal’cev’s theorem
in every k-group G the components of any element belong to G(k) [12, §16.1.4].

Theorem 3. [12, § 18.1.4]. Let K be an algebraically closed extension of
a perfect field k and G a commutative algebraic k-group. Then the semisimple
and unipotent elements constitute the k-subgroups Gs and G, respectively and
G = G5 x G, . The same decomposition is true for k—portions: G (k) = G (k) x
x G, (k).

The following properties are well known.

Lemma 2. Let k be a perfect field. (i) For any z,y € GL, (k) we have
(yry™h), = yasy~t and (yay '), = yxuy =t , (i) For any commuting a,b € GL, (k)
the following holds true: (ab), = asbs and (ab), = a,b,.

Proof. (i) We have yaxy™' = yraay' = (yzsy™t) (yry™t). As yx,yt,
yx,y ' commute and are semisimple and unipotent respectively, the desired equal-
ities follow from the uniqueness of Jordan-Chevalley decomposition. (ii) Let G be
an algebraic group generated by a, b, that is the intersection of all algebraic groups
containing a,b. Then G is a commutative k-group (see [2, Ch.I, § 2.4] ) and the
preceding Theorem shows that G = G4 x G,,. It follows that asas € G, a,.b, € G,
and thus ab = (asbs) (a,b,) is a Jordan-Chevalley decomposition for ab. Whence
the formulas. |

Lemma 3. Cf. [26] Let k be a perfect field. Let x,y, z, in GL, (k) be such that
[z,y] = 2z and z commutes with both x and y. Then 1) zy,x™" = 2.y, 2)2" = 1.
In particular, the element ™ is unipotent.
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Proof. Rewrite the equality [z,y] = 2z in the form zyz™' = zy. Taking the

semisimple components of the last equality, and using the preceding Lemma 2, we
obtain the formula zy,z™! = 2,y,. Iterating this formula, we get

qusqu = Z;]ys (4)

for all natural q. A fact from linear algebra is that any commuting set S of
diagonalizable linear endomorphisms of finite-dimensional vector space V' can be
simultaneously diagonalized over the algebraic closure k [5, Section 6.5., Theorem
8]. Then, taking the commuting semisimple elements z, and y, in diagonal form

zs =diag{z1, ..., zn},ys = diag{yr, ..., yn}

over the algebraic closure k (as we may), we see that the matrices 29y, (g > 0) are
all diagonal and pairwise conjugated. Therefore, (4) implies 2{y; = y;(q) for some

function ¢ — j(q) € {1,...,n}. It follows that 2{'y; = 2{°y; for some distinct
q1,q2 € [1;n+1]. Hence z{ = 1, where 1 < ¢ < n and so 2z} = 1. Similarly,
2™ =1 for all 4. Hence 2™ = 1 and 2™ is unipotent. [ |

2.1. The proof of Theorem 2

Let K be an algebraically closed extension of a perfect field £ . By assumption,
j — 1 > 2, hence there is a natural r such that j > r >4 . The subgroup generated
by i (R),x,; (R),x;; (R) is naturally isomorphic to UT5(R), therefore we may
assume henceforth that m = 3 and z;; (R) = Z. To simplily notation, we assume
that U = UT3(R) is contained in GL, (k). Of course, this embedding is assumed
to be a monomorphism of abstract groups. In particular, apriori U may not be an
algebraic subgroup in GL, (k) in any reasonable sense. We denote by G the Zariski
closure of a group G < GL,(K) and we denote by G° the connected component of
an algebraic group G < GL,(K). Recall that G° is a finite index subgroup in G
and if G is k-defined then G° is an algebraic k-defined group [2, Ch.I, §.1.2].

By Mal’cev’s theorem in an algebraic group G the components g, g, of any
element g belong to G and, moreover, if g is k-rational then g4, g, are k-rational too
[12, § 16.1.4] . First, note that there is a dense open subset in Z consisting of the
commutators. Indeed, Lemma 1 implies that the commutator map ¢: U x U — Z
is surjective. It is obvious that the map c is regular, so its extension c¢: U xU — Z
is also a regular map. We can therefore apply the Chevalley theorem [2, Theorem

AG.10.2] to conclude that the image of ¢ contains a dense open subset C' in Z.
It follows that the intersection C' NZ' is a dense open subset in 7’ consisting of

commutators. By Theorem 3 we have Z = Z, x Z, . We assert that 70 = 1.

s

Suppose not. Then setting 7,, = {x € 72 ca = 1}, we obtain a proper closed

subgroup T,x Z, in a connected algebraic group Z  hence its complement D

is a dense open subset in 7. The intersection of two open dense subsets in a
connected variety is nonempty hence the intersection C'N D is nonempty and open

in 72 hence there is z = z,2z, € C N D. By Lemma 3, the element 27 is unipotent
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for some ¢ dividing n! . We conclude that 2z = 1 and this implies that z € T,, x
=0
x 4.,

the connected component Z. is trivial, hence Z, is finite and thus Z is virtually
unipotent k—group.

contradicting the inclusion z € D. Finally, we have that Z = Z, x Z, and

3. Algebraic rings

Let K be an algebraically closed extension of a perfect field £. By an algebraic
k-ring we mean an affine algebraic k-variety R over K with the k-regular maps
"addition” and "multiplication”, which turn R into a ring (possible non-associative
and without identity). In particular this means that the additive group (R, +) is an
affine abelian algebraic k-group. Note that for every r € R the left multiplication
map R — R given by x — rz (x € R) is everywhere defined on R and hence it is
regular, see [12, § 8.1.9]. Similarly, the right multiplication map is regular also.

Lemma 4. Cf. [8] Let R be an algebraic k-ring. Then the connected component
RO of an additive group (R,+) is a two-sided ideal in R. Moreover, R’ is an
algebraic k—ring.

Proof. Recall that the connected component R® is a subgroup of finite index in
(R,+) whose cosets are connected, as well as irreducible, components of (R,+).
Since R is defined over k, so is R°. For any r € R the map z — rx takes R" onto
rR°, hence rR° is irreducible, see [12, § 8.2.5] . As it contains 0, it is contained
in R°. This shows that RY is a left ideal in R. Similarly, R° is a right ideal. The
last assertion follows directly from definitions. |

Recall that a ring R (not necessarily associative) is an algebra over a field K
if an operation K x R — R is defined such that this operation together with the
addition constitute a structure of K'—vector space and the following axioms are
satisfied:

(Aa)b=a(Ab) = A(ab) for all A € K,a,b € R. (5)

Lemma 5. Let R be an algebraic k-ring over field K of characteristic zero.
Suppose that the connected component R° of the group (R,+) is a unipotent
group. Then R° has a structure of [inite dimensional K—algebra which is
compatible with the ring structure on R°. Moreover, R(k) has a structure of a
finite dimensional algebra over k which is compatible with the ring structure on
RO().

Proof. By assumption (R, +) is a commutative unipotent group. Hence there is a
k-isomorphism R° ~ K™. Thus we have a structure of a K-vector space on R° (and
the induced k-vector space structure on R° (k) ). We are going to show that this
structure is compatible with the ring structure on R° in a sense that the axioms (5)
hold true. Note that the axiom (Aa)b = X (ab) means that the operator r, of right
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multiplication by b should be K-linear. But 7, is a regular endomorphism of the
group (K™, +), hence it is a K-linear map (here the characteristic assumption is
decisive). The second axiom can be verified similarly. Finally, the k-isomorphism
R® ~ k™ implies that R (k) = k™ and the k-algebra structure on k" is compatible
with the ring structure on R° (k). [ |

Theorem 4. Let k be a [ield of an arbitrary characteristic and let R be a
unital connected algebraic associative k-ring. Then the multiplicative group R*
of R is a linear k-group.

Proof. The group G = {(z,y) € R x R: zy = 1} is an affine algebraic k-group and
thus R* = G N (R, 1) is also an affine algebraic k-group. Every affine k-group is
k-isomorphic to a closed subgroup, defined over k, of some GL, (K) (see [2, ch. |
Prop. 1.10], and [12, § 31.23]), hence also is linear over k. [ |

4. The proof of Theorem 1

We follow the scheme outlined in [8], overcoming some technical difficulties.
Suppose that E3(R) is linear over k. To simplify the notation we assume that E;(R)
is contained in GL, (k). Let Z denote x5 (R). The Zariski closure Z in GL,(K) is
a commutative algebraic k-group. Henceforth we use an additive notation for this
group operation. By Theorem 2, the group Z° is unipotent.

In order to define the multiplication on Z we need to use the following monomial
matrices in E3(R) :

0 -1 0 1 0 0
u=11 0 0 and v=10 0 1
0 0 1 0 -1 0

They satisfy the following key properties (we denote conjugation by “z =
= uzu~t):
Ya3(r) = zo3(r) and  “xy3(r) = x12(r).
Recall again that we consider Ej(R) as a subgroup in GL, (K). The conjugacy
operations g —" g,g — Yg are k—regular maps on GL,(K). Let us define a
k-regular map - from Z x Z to GL,(K) as follows:

vy ety ey € ).

Since - takes Z x Z into Z, it also takes Z x Z into Z ( [2, ch. I, sec.6.6.]).
Moreover, the commutator relation [z12(7), 223(s)] = x13(rs), (r, s € R) implies that
the restriction of - to R C Z coincides with the original multiplication on R. The
element 1 € R is a unit in R hence it is unit (with respect to -) in its closure R = Z
. Similarly, since R is associative, R = Z is associative also. We have introduced
an associative unital ring structure on Z O R extending the original ring structure
on R. By Lemma 5, the group Z° (k) is a two-sided ideal in Z (k) and Z° (k) is
linear over k hence Z°(k) N R is a two-sided ideal in R which is linear over k.
The proof of Theorem 1 is complete.
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5. Nonlinear Witt rings R with linear GL, (R)

The analog of Theorem 4 is not true in the case of positive characteristic. Here
is one simple example given in [8] (it is somewhat similar to the example from [1]
): Let K be an infinite field of characteristic 2 and let us give R = K x K the
following operations:

(a,b) + (¢,d) = (a+ c,ac+ b+ d), (a,b) x (c,d) = (ac,bc* +a*d).  (6)

One can verily directly that R becomes a commutative local ring with the maximal
ideal M = (0, K) and residue field R/M ~ K. Therefore R does not have proper
ideals of finite index. This ring is not linear over any field since all elements of the
form (a,b), a # 0, have “additive” order 4. Hence R is not virtually linear. Rather
surprisingly, GL,, (R) is linear for all n > 2! Thus, there exists a (strange) ring
R which is not (virtually) linear over any field, but the group EL,(R) is linear
' In this section we show that the all truncated Witt rings W, (k) over infinite
perfect field of finite characteristic possess this property.

5.1. Witt rings are strange

Our basic reference for this section is Serre [Ser] (see also [7,24]). From now
on, we let p be a fixed prime number. For n > 0 define the n-th Witt polynomial to
be

W= p' X" € Z[Xo, X1, Xo). (7)
=0
Thus
WO — XO
Wi = X§ + pX,

Wy =X+ pX] + p*Xa

W= X5 +pXP o "X

I we extend the coefficient ring to Z [%] or even to a larger ring A, then the
equations can be inverted:

Xo=Wo, X1 =p t (W, —WP),... etc. (8)

Theorem 5. There exist unique sequences (So,...,Sn,...),(Po,...,Py,...) of
polynomials in Z[Xo,..., Xn,--; Y0, ..., Yn,...], such that:

Wi (Soy -y S0) = Wo (Xoy oo, Xon) + Wy (Yo, ..., Ya),

Wiy (Poy ..., Py) =W, (Xo,y ..., X)) Wi (Yo,. .., Ya)
foralln=0,1...
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Example 1.

XP+YP —(Xo+ Y,
So = Xo + Yo, Si=X;+Y, + 22 p( : 0)7

By = XoYo, P = X0Y1 + X0Y) + pXiYi.

Let A be a unital commutative ring. We have the usual, product ring structure
on A"l Define a new addition and multiplication in A"*! by

a+b= (Sp (a,b),...,Sn(a,b)),
a-b=(F(a,b),...,P,(a,b)).

These laws of composition make A" into a commutative unital ring, called the
ring of (truncated) Witt vectors and denoted W,, (A). The zero and unit elements of
W, (A) are 0 = (0, ...,0) and 1 = (1,0, ...,0) respectively. In case n =1 we have a
ring isomorphism Wy (A) ~ A. The map

W, : W, (A) — A"+
which assigns to a Witt vector a = (ay, . ..,a,) the element
(WO (CL()) ) Wl (a(b al) ) ,Wn (CL(], A ,an))

of the product ring A"*! is a ring homomorphism by the very definition of the
polynomials S and P. It follows also that the projection map (ao,...,a,) — ao is a
ring homomorphism from W, (A) to A.

Example 2. The ring structure W; (A) is defined on A? according formulas (8),
so in coordinates x = (g, 1),y = (Yo, y1) it looks as follows:
. . 1
(x+y), = zo+wo, (zFy), =21 +m + ; (xh + yb — (20 +130)"),
(@-y)y = moyo, (T y)y = Toy1 + T1yg + PTay1.
In case p = 2 we obtain
(z+y), = zo+wo, (z+y), = 1 + y1 + Zoo,
(z-y)y = Zovo, (zy), = 2gy1 + 2195,
which coincides with the Kassabov-Sapir structure given by 6.

Proposition 1. Let K be any algebraically closed field and k its prime sub-
field. The Witt ring W, (K) is a unital commutative algebraic k-ring. Moreouver,
the set of k-rational points is canonically isomorphic to the ring W, (k).

Proof. The ring W, (K) is algebraic because the underlying k-variety is K"*!
and ring operations are polynomial over the prime subfield. The k-points are
k"t C K™ and the operations are given by the same polynomials as in the
definition of W, (k). |
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"Verschiebung” V' and Frobenius F. One defines the Verschiebung (=shift)
map V : W,(A) — W,(A) by

(o, @1, ey Tp) = (0, oy ooy Tp1).

This map is additive (in Witt ring structure). In case A is the ring of charac-
teristic p the Frobenius map F : W,(A) — W, (A) is defined by

(o, X1,y ey @) — (2, 2l . 2h).

These maps satisly identities V. F' = FV = p , where p denotes the p-power map
on the additive group of W, (k).

Theorem 6. Let A be an infinite integral domain of characteristic p > 0. The
ring Wo(A) is linear over the quotient field K of A. For every natural n the Witt
ring W,,(A) is not virtually linear over any field.

Proof. As we know, Wy(A) ~ A, and A is clearly linear over K. When n > 1
we first show that W, (k) has an additive exponent p"*!' and, moreover, all Witt
vectors (zg, ..., z,) With zg # 0 have an additive order p"*!. Iterating the formula

VF = FV = p, we obtain (VF)* = (FV)* = p* for any natural k. Hence

k

k _ pk p
P* (20, ... xn) = (0,...,0,:160 ,...,xn_k>,

from which it follows that p"*'z = 0 for each x € W,,(A). Moreover, if zy # 0
then p™ (zg, ..., z,) = (0, .. .O,x§n> # 0.

Finalizing the proof, let I be an ideal of finite index in W,, (A), which is linear

over some field L. The ideal I can not lie entirely in the ideal M = (0, A4,..., A),

since W,, (A) /M =~ k is infinite by assumption. Hence, there is © = (zg,...,z,) € I

with zo # 0 but then p"™'z = 0 and p"x # 0, which can not happen in an

L-algebra. [

Theorem 7. For any field k and any m,n > 1 the group GL,, (W, (k)) is
linear over k.

Proof. Since W, (k) is algebraic, the full matrix ring R = M,, (W, (k)) is an
algebraic k-ring. By theorem 4 the multiplicative group R* is linear over k. Hence
its subgroup GL,, (W, (k)) is linear over k also. [

6. Questions

1. It is proved in [8] that any ring homomorphism of a free associative ring
Z(z,y) into an algebraic ring R has a non-trivial kernel. Is it possible to
embed F,(x,y) into an algebraic ring over a field of positive characteristic?
(see Remark 16 in [8]).

2. What is the structure of affine (non-commutative) algebraic rings?
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3. What is the structure of (not necessarily affine) algebraic rings? The comple-
ment by George M. Bergman to the book [18] hopefully might be helpful.

4. Let R be an almost linear ring over a field k. Is it true that E,, (R) is a linear
group over k ?
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HEOBXOIHUMOE YCJIOBHUE JIUHEMHOCTH HAJ IIOJIEM IJId
3JJEMEHTAPHON MATPUYHOM I'PYIIIbI

I'.A. HockoB
A.¢.-M.H., c.H.C., e-mail: g.noskov@googlemail.com

Wucturyt Marematuku uM. C.JI. Co6onesa COPAH

AHHoTanua. Mubl 10Ka3biBaeM, 4TO ecJid R eCTb acCOLMaTUBHOE KOJbLO C eIUHULEH,
U 3J1eMeHTapHasi MaTpudHas rpynna F,(R) npu n > 3 juHeiiHa Haj 1HoJeM k HyJeBOH
XapaKTepPUCTUKH, TO B R MMeeTcs Haeas KOHEUHOrO0 WHAeKca, JUHeHHBINH Hanm k. Io-
Ka3blBaeTcsl, UTo, ecJu A fB/seTCs KOMMYTAaTHBHBIM LIEJOCTHBIM KOJIbIIOM HEHYJIEBOU
XapaKTePUCTHUKH, TO [Jisl JIIOGOr0 HATypaJbHOrO m KOJblOo BeKTopoB Burra W, (A)
He SBJsIeTCS MOYTH JHMHEHHBIM HH Hal KakuUM mojeM. B To ke Bpemsi, HeCKOJbKO
napafokcasnbHo, obuas nunednas rpynna GL,, (W, (k)) auHeiina Han k B ciydae mpo-
H3BOJILHOTO TOJIS K.

KuroueBbie cioBa: JuHelHas rpymna, moJe, apguHHas anrebpanyeckas Tpyrmna, ac-

COMAaTHBHOE KOJIbIIO, KOJIbIO Burra.



