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Abstract. The main objective of vulnerability analysis is to select the alterna-
tive which is the least vulnerable. To make this selection, we must describe the
vulnerability of each alternative by a single number — then we will select the
alternative with the smallest value of this vulnerability index. Usually, there
are many aspects of vulnerability: vulnerability of a certain asset to a storm,
to a terrorist attack, to hackers’ attack, etc. For each aspect, we can usually
gauge the corresponding vulnerability, the difficulty is how to combine these
partial vulnerabilities into a single weighted value. In our previous research,
we proposed an empirical idea of selecting the weights proportionally to the
number of times the corresponding aspect is mentioned in the corresponding
standards and requirements. This idea was shown to lead to reasonable results.
In this paper, we provide a possible theoretical explanation for this empirically
successful idea.

Keywords: vulnerability analysis, weighted average, heuristic method, prob-
abilistic justification.

1. Assigning Weights to Different Factors in Vulnerability
Analysis: Formulation of the Problem

Need for vulnerability analysis. When it turns out that an important system is
vulnerable — to a storm, to a terrorist attack, to hackers’ attack, etc. — we need to
protect it. Usually, there are many different ways to protect the same system. It is
therefore desirable to select the protection scheme which guarantees the largest de-
gree of protection within the given budget. The corresponding analysis of different
vulnerability aspects is known as vulnerability analysis; see, e.g., [2,8,11–14].
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Vulnerability analysis: reminder. Among several possible alternative schemes
for protecting a system, we must select a one under which the system will be
the least vulnerable. As we have mentioned, there are many different aspects
of vulnerability. Usually, it is known how to gauge the vulnerability vi of each
aspect i. Thus, each alternative can be characterized by the corresponding vulner-
ability values (v1, . . . , vn). Some alternatives result in smaller vulnerability of one
of the assets, other alternatives leave this asset more vulnerable but provide more
protection to other assets.

To be able to compare different alternatives, we need to characterize each alter-
native by a single vulnerability index v — an index that would combine the values
v1, . . . , vn corresponding to different aspects: v = f(v1, . . . , vn).

If one of the vulnerabilities vi increases, then the overall vulnerability index
v must also increase (or at least remain the same, but not decrease). Thus, the
combination function f(v1, . . . , vn) must be increasing in each of its variables vi.

Vulnerability analysis: important challenge. While there are well-developed
methods for gauging each aspect of vulnerability, there is no well-established way
of combining the resulting values v1, . . . , vn into a single criterion v = f(v1, . . . , vn).

Usually, vulnerabilities vi are reasonably small; so terms which are quadratic
(or of higher order) in vi can be usually safely ignored. As a result, we can expand
the (unknown) function f(v1, . . . , vn) in Taylor series in vi and keep only linear
terms in this expansion. As a result, we get a linear dependence

v = c0 +
n∑
i=1

ci · vi (1)

for some coefficients ci.
Comparison between different alternatives does not change if we subtract the

same constant c0 from all the combined values: v < v′ if and only if v−c0 < v′−c0.

Thus, we can safely assume that c0 = 0 and v =
n∑
i=1

ci · vi.

Similarly, comparison does not change if we re-scale all the values, e.g., divide

them by the same constant
n∑
i=1

ci. This is equivalent to considering a new (re-scaled)

combined function

f(v1, . . . , vn) =

n∑
i=1

ci · vi
n∑
i=1

ci

=
n∑
i=1

wi · vi, (2)

where
wi

def
=

ci
n∑
j=1

cj

. (3)

For these new weights, we have
n∑
i=1

wi = 1. (4)
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The fact the function must be increasing implies that wi ≥ 0.
The important challenge is how to compute the corresponding weights wi.

Heuristic solution. In [4, 15, 17], we proposed an empirical idea of selecting the
weights proportionally to the the frequency with which the corresponding aspect
is mentioned in the corresponding standards and requirements.

This idea was shown to lead to reasonable results.

Remaining problem and what we do in this paper. A big problem is that the
above approach is purely heuristic, it does not have a solid theoretical explanation.

In this paper, we provide a possible theoretical explanation for this empirically
successful idea.

2. Possible Theoretical Explanation

Main idea. We consider the situation in which the only information about the
importance of different aspects is how frequently these aspects are mentioned in
the corresponding documents. In this case, the only information that we can use to
compute the weight wi assigned to the i-th aspect is the frequency fi with which
this aspect is mentioned in the documents. In other words, we take wi = F (fi),
where F (x) is an algorithm which is used to compute the weight based on the
frequency.

Our goal is to formulate reasonable requirements on the function F (x) and find
all the functions F (x) which satisfy this requirement.

First requirement: monotonicity. The more frequently the aspect is mentioned,
the more important it is; thus, if fi > fj, we must have wi = F (fi) > F (fj) = wj.
In mathematical terms, this means that the function F (f) must be increasing.

Second requirement: the weights must add up to one. Another natural
requirement is that for every combination of frequencies f1, . . . , fn for which

n∑
i=1

fi = 1, (5)

the resulting weights must add up to 1:

n∑
i=1

wi =
n∑
i=1

F (fi) = 1. (6)

We are now ready to formulate our main result.

Proposition 1. Let F : [0, 1]→ [0, 1] be an increasing function for which
n∑
i=1

fi = 1

implies
n∑
i=1

F (fi) = 1. Then, F (x) = x.

Comment. So, it is reasonable to use the frequencies as weights. This justifies the
above empirically successful heuristic idea.
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Proof.

1◦. Let us first prove that F (1) = 1.

This follows from our main requirement when n = 1 and f1 = 1. In this case, the
requirement (6) leads to F (f1) = F (1) = 1.

2◦. Let us prove that F (0) = 0.

Let us consider n = 2, f1 = 0, and f2 = 1. Then,
n∑
i=1

fi = 1 and therefore,
n∑
i=1

F (fi) = F (0) + F (1) = 1. Since we already know that F (1) = 1, we thus

conclude that F (0) = 1− F (1) = 1− 1 = 0.

3◦. Let us prove that for every m ≥ 2, we have F
(

1

m

)
=

1

m
.

Let us consider n = m and f1 = . . . = fn =
1

m
. Then,

n∑
i=1

fi = 1 and therefore,

n∑
i=1

F (fi) = m · F
(

1

m

)
= 1. We thus conclude that F

(
1

m

)
=

1

m
.

4◦. Let us prove that for every k ≤ m, we have F
(
k

m

)
=

k

m
.

Let us consider n = m − k + 1, f1 =
k

m
, and f2 = . . . = fm−k+1 =

1

m
. Then,

n∑
i=1

fi = 1 and therefore,

n∑
i=1

F (fi) = F

(
k

m

)
+ (m− k) · F

(
1

m

)
= 1. (7)

We already know that F
(

1

m

)
=

1

m
. Thus, we have

F

(
k

m

)
= 1− (m− k) · F

(
1

m

)
= 1− (m− k) · 1

m
=

k

m
. (8)

The statement is proven.

5◦. We have already proven that for every rational number r, we have F (r) = r.
To complete the proof, we need to show that F (x) = x for every real number from
the interval [0, 1], not only for rational numbers.

Let x be any real number from the interval (0, 1). Let

x = 0.x1x2 . . . xn . . . , xi ∈ {0, 1}, (9)

be its binary expansion. Then, for every n, we have

`n
def
= 0.x1 . . . xn ≤ x ≤ un

def
= `n + 2−n. (10)
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As n tends to infinity, we have `n → x and un → x.
Due to monotonicity, we have F (`n) ≤ F (x) ≤ F (un). Both bounds `n and un

are rational numbers, so we have F (`n) = `n and F (un) ≤ un. Thus, the above
inequality takes the form `n ≤ F (x) ≤ un. In the limit n → ∞, when `n → x and
un → x, we get x ≤ F (x) ≤ x and thus, F (x) = x. The proposition is proven.

Possible fuzzy extension. Our current analysis is aimed at situations when we
are absolutely sure which aspects are mentioned in each statement. In practice,
however, standards and documents are written in natural language, and a natural
language is often imprecise (“fuzzy”). As a result, in many cases, we can only de-
cide with some degree of certainty whether a given phrase refers to this particular
aspect.

A natural way to describe such degrees of certainty is by using fuzzy logic,
technique specifically designed to capture imprecision of natural language; see,
e.g., [6, 10, 19]. In this case, instead of the exact frequency fi — which is defined
as a ratio

ni
N

between the number ni of mentions of the i-th aspect and the total

number N of all mentions – we can use the ratio
µi
N
, where µi is a fuzzy cardinality

of the (fuzzy) set of all mentions of the i-th aspects — which is usually defined as
the sum of membership degrees (= degrees of certainty) for all the words from the
documents.

3. Towards a More General Approach

What we did: reminder. In the previous section, we proved that if we select
the i-th weight wi depending only on the i-th frequency, then the only reasonable
selection is F (x) = x.

A more general approach. Alternatively, we can compute a “pre-weight” F (fi)
based on the frequency, and then we can normalize the pre-weights to make sure
that they add up to one, i.e., take

wi =
F (fi)
n∑
k=1

F (fk)
. (11)

Remaining problem. In this more general approach, how to select the func-
tion F (f)?

What we do in this section. In this section, we describe reasonable requirements
on this function F (f), and we describe all possible functions F (f) which satisfy
these requirements.

First requirement: monotonicity. Our first requirement is that aspects which
are mentioned more frequently should be given larger weights. In other words, if
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fi > fj, then we should have

wi = wi =
F (fi)
n∑
k=1

F (fk)
>

F (fj)
n∑
k=1

F (fk)
= wj. (12)

Multiplying both sides of this inequality by the sum
n∑
k=1

F (fk), we conclude that

F (fi) > F (fj), i.e., that the function F (f) should be monotonic.

Second requirement: independence from irrelevant factors. Let us assume
that we have four aspects, and that the i-th aspect is mentioned ni times in the
corresponding document. In this case, the frequency fi of the i-th aspect is equal
to

fi =
ni

n1 + n2 + n3 + n4

. (13)

Based on these frequencies, we compute the weights wi, and then select the alter-
native for which the overall vulnerability

w1 · v1 + w2 · v2 + w3 · v3 + w4 · v4 (14)

is the smallest possible.
In particular, we may consider the case when for this particular problem, the

fourth aspect is irrelevant, i.e., for which v4 = 0. In this case, the overall vulnera-
bility is equal to

w1 · v1 + w2 · v2 + w3 · v3. (15)

On the other hand, since the fourth aspect is irrelevant for our problem, it
makes sense to ignore mentions of this aspect, i.e., to consider only the values n1,
n2, and n3. In this approach, we get new values of the frequencies:

f ′i =
ni

n1 + n2 + n3

. (16)

Based on these new frequencies f ′i , we can now compute the new weights w′i, and
then select the alternative for which the overall vulnerability

w′1 · v1 + w′2 · v2 + w′3 · v3 (17)

is the smallest possible.
The resulting selection should be the same for both criteria. As we have

mentioned, the optimizing problem does not change if we simply multiply the
objective function by a constant. So, if w′i = λ · wi for some λ, these two objective

functions lead to the exactly same selection. In this case, the trade-off
wi
wj

between

each two aspects is the same:
w′i
w′j

=
wi
wj
. However, if we have a different trade-off

between individual criteria, then we may end up with different selections. Thus, to

make sure that the selections are the same, we must guarantee that
w′i
w′j

=
wi
wj
.
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Substituting the formulas for the weights into the expression for the weight

ratio, we can conclude that
wi
wj

=
F (fi)

F (fj)
. Thus, the above requirement takes the

form
F (f ′i)

F (f ′j)
=
F (fi)

F (fj)
. One can check that the new frequencies f ′i can be obtained

from the previous ones by multiplying by the same constant:

f ′i =
ni

n1 + n2 + n3

=
n1 + n2 + n3 + n4

n1 + n2 + n3

· ni
n1 + n2 + n3 + n4

= k · fi, (18)

where we denoted
k

def
=
n1 + n2 + n3 + n4

n1 + n2 + n3

. (19)

Thus, the above requirement takes the form
F (k · fi)
F (k · fj)

=
F (fi)

F (fj)
. This should be true

for all possible values of fi, fj, and k. Once we postulate that, we arrive at the
following result.

Proposition 2. An increasing function F : [0, 1]→ [0, 1] satisfies the property

F (k · fi)
F (k · fj)

=
F (fi)

F (fj)
(20)

for all possible real values k, fi, and fj if and only if F (f) = C · fα for some
α > 0.

Comments.

� The previous case corresponds to α = 1, so this is indeed a generalization of
the formula described in the previous section.

� If we multiply all the values F (fi) by a constant C, then the normalizing
sum is also multiplied by the same constant, so the resulting weights do not
change:

wi =
F (fi)
n∑
k=1

F (fk)
=

C · fαi
n∑
k=1

C · fαk
=

fαi
n∑
k=1

fαk

. (21)

Thus, from the viewpoint of application to vulnerability, it is sufficient to
consider only functions

F (f) = fα. (22)

Proof.

1◦. First, it is easy to check that for all possible values C and α > 0, the function
F (f) = C · fα is increasing and satisfies the desired property. So, to complete our
proof, we need to check that each increasing function which satisfies this property
has this form.
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2◦. The desired property can be equivalently reformulated as
F (k · fi)
F (fi)

=
F (k · fj)
F (fj)

.

This equality holds for all possible values of fi and fj. This means that the ratio
F (k · f)

F (f)
does not depend on f , it only depends on k. Let us denote this ratio by

c(k). Then, we get
F (k · f)

F (f)
= c(k), i.e., equivalently, F (k · f) = c(k) · F (f).

3◦. Since k · f = f · k, we have F (k · f) = F (f · k), i.e., c(k) · F (f) = c(f) · F (k).

Dividing both sides by c(k) · c(f), we conclude that
F (f)

c(f)
=
F (k)

c(k)
. This equality

holds for all possible values of f and k. This means that the ratio
F (f)

c(f)
does not

depend on f at all, it is a constant. We will denote this constant by C. From the

condition
F (f)

c(f)
= C, we conclude that F (f) = C · c(f). So, to prove our results, it

is sufficient to find the function c(f).

4◦. Substituting the expression F (f) = C · c(f) into the formula F (k · f) =
c(k) · F (f), we get C · c(k · f) = c(k) ·C · c(f). Dividing both sides of this equality
by C, we conclude that c(k · f) = c(k) · c(f). Let us use this equality to find the
function c(f).

5◦. For k = f = 1, we get c(1) = c(1)2. Since c(k) 6= 0, we conclude that c(1) = 1.

6◦. Let us denote c(2) by q. Let us prove that for every integer n, we have
c(21/n) = q1/n.

Indeed, for f = 21/n, we have f · f · . . . · f (n times) = 2, thus, q = c(2) =
c(f) · . . . · c(f) (n times) = (c(f))n. Therefore, we conclude that indeed, c(f) = 21/n.

7◦. Let us prove that for every two integers m and n, we have c(2m/n) = qm/n.

Indeed, we have 2m/n = 21/n · . . . · 21/n (m times). Therefore, we have

c(2m/n) = c(21/n) · . . . · c(21/n) (m times) = (c(21/n)m. (23)

We already know that c(21/n) = q1/n; thus, we conclude that c(2m/n) = (q1/n)m =
qm/n. The statement is proven.

8◦. So, for rational values r, we have c(2r) = qr. Let us denote α def
= log2(q). By

definition of a logarithm, this means that q = 2α. Thus, for x = 2r, we have

qr = (2α)r = 2α·r = (2r)α = xα. (24)

So, for values x for which log2(x) is a rational number, we get c(x) = xα.
Similarly to the proof of Proposition 1, we can use monotonicity to conclude

that this equality c(x) = xα holds for all real values x. We have already proven
that F (x) = C · c(x), thus we have F (x) = C · xα. The proposition is proven.
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4. Possible Probabilistic Interpretation of the Above For-
mulas

Formulation of the problem. In the above text, we justified the empirical formula
F (x) = x without using any probabilities — since we do not know any probabilities
that we could use here.

However, in the ideal situation, when we know the exact probability of every
possible outcome and we know the exact consequences of each outcome, a rational
decision maker should use probabilities — namely, a rational decision maker should
select an alternative for which the expected value of the utility is the largest; see,
e.g., [3,7,9,16].

From this viewpoint, it would be nice to show that the above heuristic solution
is not only reasonable in the above abstract sense, but that it actually makes perfect
sense under certain reasonable assumptions about probability distributions.

What we do in this section. In this section, on the example of two aspects v1

and v2, we show that there are probability distributions for which the weights wi
should be exactly equal to frequencies.

Towards a formal description of the problem. Let us assume that the actual
weights of two aspects are w1 and w2 = 1 − w1. Let us also assume that vulner-
abilities vi are independent random variables. For simplicity, we can assume that
these two variables are identically distributed.

In each situation, if the first vulnerability aspect is more important, i.e., if w1 ·
v1 > w2·v2, then the document mentions the first aspect. If the second vulnerability
aspect is more important, i.e., if w1 · v1 < w2 · v2, then the document mentions
the second aspect. In this case, the frequency fi with which the first aspect is
mentioned is equal to the probability that the first aspect is most important, i.e.,
the probability that w1 · v1 > w2 · v2:

f1 = P (w1 · v1 > w2 · v2). (25)

We would like to justify the situation in which fi = wi, so we have

w1 = P (w1 · v1 > w2 · v2). (26)

This equality must hold for all possible values of w1.

Analysis of the problem and the resulting solution. The desired equality

can be equivalently reformulated as P

(
v1

v2

>
w2

w1

)
= w1. Since w2 = 1 − w1,

we get P
(
v1

v2

>
1− w1

w1

)
= w1. To simplify computations, it is convenient to use

logarithms: then ratio becomes a difference, and we get P (ln(v1)−ln(v2) > z) = w1,

where we denoted z def
= ln

(
1− w1

w1

)
.

Let us describe w1 in terms of z. From the definition of z, we conclude that

ez =
1− w1

w1

=
1

w1

− 1. (27)
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Thus,
1

w1

= 1 + ez, and w1 =
1

1 + ez
. So, we conclude that

P (ln(v1)− ln(v2) > z) =
1

1 + ez
.

The probability of the opposite event ln(v1)− ln(v2) ≤ z is equal to one minus this
probability:

P (ln(v1)− ln(v2) ≤ z) = 1− 1

1 + ez
=

ez

1 + ez
. (28)

This means that for the auxiliary random variable ξ def
= ln(v1) − ln(v2), the cumu-

lative distribution function Fξ(z)
def
= P (ξ ≤ z) is equal to Fξ(z) =

ez

1 + ez
. This

distribution is known as a logistic distribution; see, e.g., [1,5,18].
It is known that one way to obtain a logistic distribution is to consider the

distribution of ln(v1)−ln(v2), where v1 and v2 are are independent and exponentially
distributed. Thus, the desired formula wi = fi (i.e., F (x) = x) corresponds to a
reasonable situation when both vulnerabilities are exponentially distributed.

5. Conclusion

In vulnerability analysis, it is important to adequately describe the overall vul-
nerability of a system. For most systems, there are many different aspects of
vulnerability; to estimate the overall vulnerability of a system, it is necessary
to combine vulnerability values corresponding to different aspects of vulnerability
— e.g., by producing a weighted average of different vulnerability values. For
such a combination to adequately describe an overall vulnerability, we need to use
appropriate weights.

In the previous papers, we proposed to take, as a weight of each aspects, the
relative frequency with which this particular aspect of vulnerability is mentioned
in the corresponding standards and requirements. This heuristic proposal was
shown to lead to reasonable results. In this paper, we provide a possible theoretical
explanation for this heuristic idea.
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Аннотация. Основная цель анализа уязвимости — выбор такой альтернативы, ко-
торая обеспечивает наименьшую степень уязвимости. Чтобы сделать этот выбор,
мы должны описать степень уязвимости каждой альтернативы одним числом. Да-
лее мы выберем вариант с наименьшим значением этого показателя уязвимости.
Как правило, есть много аспектов уязвимости: можно рассматривать уязвимость
определённого актива к стихийным бедствиям, к терактам, к атакам хакеров и т.д.
Для каждого аспекта, мы обычно можем оценить соответствующую уязвимость.
Трудность заключается в том, как перевести эти частичные уязвимости в единый
взвешенный показатель. В нашем предыдущем исследовании мы предложили эм-
пирический метод выбора весовых коэффициентов пропорционально количеству
упоминаний соответствующего аспекта уязвимости в стандартах и требованиях.
Как было показано, данная идея является состоятельной на практике. В настоя-
щей статье мы предоставляем её возможное теоретическое объяснение.
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