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KINEMATIC SPACES AND DE VRIES ALGEBRAS:

TOWARDS POSSIBLE PHYSICAL MEANING OF DE VRIES

ALGEBRAS

O. Kosheleva, F. Zapata

Traditionally, in physics, spacetimes are described by (pseudo)Riemann

spaces, i.e., by smooth manifolds with a tensor metric field. However, in

several physically interesting situations smoothness is violated: near the Big

Bang, at the black holes, and on the microlevel, when we take into account

quantum effects. In all these situations, what remains is causality — an or

dering relation. To describe such situations, in the 1960s, geometers H. Buse

mann and R. Pimenov and physicists E. Kronheimer and R. Penrose developed

a theory of kinematic spaces. Originally, kinematic spaces were formulated

as topological ordered spaces, but it turned out that kinematic spaces allow

an equivalent purely algebraic description as sets with two related orders:

causality and “kinematic” causality (possibility to influence by particles with

nonzero mass, particles that travel with speed smaller than the speed of

light). In this paper, we analyze the relation between kinematic spaces and

de Vries algebras – another mathematical object with two similarly related

orders.

1. Kinematic Spaces: Brief Introduction

Order relations are needed in describing space
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time. Traditionally, in physics, spacetimes are described
by (pseudo)Riemann spaces, i.e., by smooth manifolds
with a tensor metric field gij(x); see, e.g., [9]. However,
in several physically interesting situations smoothness is
violated and metric is undefined [9]:

• near the singularity (Big Bang),

• at the black holes, and

• on the microlevel, when we take into account quan
tum effects.

In all these situations, what remains is causality 4

— an ordering relation. To describe such situations,
in the 1960s, geometers H. Busemann and R. Pimenov
and physicists E. Kronheimer and R. Penrose developed a theory of kinematic

spaces [6,8,10].
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Causality: a brief history. In Newton’s physics, signals can potentially
travel with an arbitrarily large speed. To describe the corresponding causality
relation between events, let us denote an event occurring at the spatial location x

at time t by a = (t, x). In these notations, Newton’s causality relation is trivial:
an event a = (t, x) can influence an event a′ = (t′, x′) if and only if t ≤ t′:

(t, x) � (t′, x′) ⇔ t ≤ t′.

The fundamental role of the nontrivial causality relation emerged with the Special
Relativity. In Special Relativity, the speed of all the signals is limited by the speed
of light c. As a result, a = (t, x) 4 a′ = (t′, x′) if and only if t′ ≥ t and in time
t′ − t, the speed needed to traverse the distance d(x, x′) does not exceed c, i.e.,
d(x, x′)

t′ − t
≤ c. The resulting causality relation has the form

(t, x) 4 (t′, x′) ⇔ c · (t′ − t) ≥ d(x, x′),

i.e.,

(t, x) 4 (t′, x′) ⇔ c · (t′ − t) ≥
√

(x1 − x′

1)
2 + (x2 − x′

2)
2 + (x3 − x′

3)
2.

This relation can be graphically described as follows:
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x = c · tx = −c · t

Importance of causality. In the original special relativity theory, causality
was just one of the concepts. Its central role was revealed by A. D. Alexan
drov [1, 2] who showed that in Special Relativity, causality implied Lorenz group.
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To be more precise, he proved that every orderpreserving transforming of the
corresponding partial ordered set is linear, and is a composition of:

• spatial rotations,

• Lorentz transformations (describing a transition to a moving reference
frame), and

• rescalings x → λ · x (corresponding to a change of unit for measuring space
and time).

This theorem was later generalized by E. Zeeman [11] and is therefore known as
the AlexandrovZeeman theorem.

When is causality experimentally confirmable? Since causality is impor
tant, it is desirable to analyze how it can be experimentally detected whether an
event a can influence event b.

In many applications, we only observe an event b with some accuracy. For
example, in physics, we may want to check what is happening exactly 1 second
after a certain reaction. However, in practice, we cannot measure time exactly, so,
we observe an event occurring 1± 0.001 sec after a.

In general, we can only guarantee that the observed event is within a certain
neighborhood Ub of the event b. Because of this uncertainty, the only possibility
to experimentally confirm that a can influence b is when a can influence all the
events from a neighborhood. i.e., when

∃Ub ∀b̃ ∈ Ub

(
a 4 b̃

)
.

Let us denote this “experimentally conformable” causality relation by a ≺ b. In
topological terms, a ≺ b means that b is in the interior K+

a of the future cone

C+
a

def
= {c : a 4 c}, i.e., of the set of all the events that can be influenced by the

event a.

Kinematic orders. In special relativity, the relation a ≺ b correspond to influences
with speeds smaller than the speed of light. This relation has a natural physical
interpretation if we take into account that in special relativity, there are two types
of objects:

• objects with nonzero rest mass can travel with any possible speed v < c but
not with the speed c; and

• objects with zero rest mass (e.g., photons) can travel only with the speed c,
but not with v < c.

In these terms, the relation ≺ correspond to causality by traditional (kinematic)
objects. Because of this fact, the relation ≺ is called kinematic causality, and
spaces with this relation ≺ are called kinematic spaces.
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Kinematic spaces: towards a description. To describe spacetime, we thus
need a (pre)ordering relation 4 (causality) and topology (= closeness). There are
some natural relation between them.

For example, a natural continuity idea implies that in every neighborhood of an
event a, there are events causally following a and causally preceding a. In other
words, for every event a and for every neighborhood Ua, there exist a− and a+ for
which a− ≺ a and a ≺ a+.

It is reasonable to assume that if the events a′ ≺ a′′ are close to the event a,
then every event in between a′ and a′′ should also be close to a. In precise terms,
every neighborhood Ua should contains an entire open interval

(a′, a′′)
def
= {b : a′ ≺ c ≺ a′′}.

Another reasonable requirement comes from the fact a motion with speed c is a
limit of motions with speeds v < c when v → c. It is therefore reasonable to require
that the future cone C+

a = {b : a 4 b} in terms of the original causality relation
4 is a closure of the future cone K+

a = {b : a ≺ b} in terms of the kinematic
causality: C+

a = K+
a . A similar property holds for the past cones

C−

a

def
= {b : b 4 a} and K−

a

def
= {b : b ≺ a} :

C−

a = K−

a . In other words,

a 4 b ⇔ ∀Ub ∃b̃
(
b̃ ∈ Ub & a ≺ b̃

)
.

In particular, for the neighborhood Ub = (b′, b′′), for which b ≺ b′′, we get a ≺ b̃ ≺ b′′

and hence a ≺ b′′. Thus,

a 4 b ⇔ ∀c(b ≺ c ⇒ a ≺ c).

These requirements lead to the following definition of a kinematic space.

Definition 1.

• A set X with a partial order ≺ is called a kinematic space if is satisfies the
following conditions:

∀a ∃a−, a+ (a− ≺ a ≺ a+);

∀a, b (a ≺ b → ∃c (a ≺ c ≺ b));

∀a, b, c (a ≺ b, c → ∃d (a ≺ d ≺ b, c));

∀a, b, c (b, c ≺ a → ∃d (b, c ≺ d ≺ a)).

• On a kinematic space, we take a topology generated by intervals

(a, b)
def
= {c : a ≺ c ≺ b}.

• A kinematic space is called normal if

b ∈ {c : a ≺ c} ⇔ a ∈ {c : c ≺ b}.

• For a normal kinematic space, we denote b ∈ {c : a ≺ c} by a 4 b.

Remark 1. It has been proven that a ≺ b 4 c or a 4 b ≺ c imply a ≺ c [10].
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Symmetry: a fundamental property of the physical world. One of the
main objectives of science is prediction. The main basis for prediction is that we
have observed similar situations in the past, and thus we expect similar outcomes
as in those past situations.

In mathematical terms, similarity corresponds to symmetry, and similarity of
outcomes — to invariance. For example, suppose that I dropped the ball, then it
fall down. I can then shift my position, and drop the ball again. It is reasonable
to expect that the ball will fall, and that its trajectory will be the same as before
— to be more precise, obtained by shift from the previous one. Similarly, if I
rotate myself 90 degrees and drop the ball again, I will get the same trajectory but
rotated by 90 degrees.

The notion of symmetry is very important in modern physics, to the extent
that, starting with the quarks, physical theories are usually formulated in terms
of symmetries — and not in terms of differential equations as in the past; see,
e.g., [7].

In particular, an important symmetry is Ttransformation, a symmetry with
respect to reversal of time t → −t. One important property of this transformation
is that if we apply it twice, we get the same point back. Another property is that
Ttransformation reverses the order of causality. Thus, we arrive at the following
definition.

Definition 2. A 11 mapping t : X → X of a kinematic space onto itself is
called a Ttransformation if t(t(a)) = a for all a and a 4 b ⇔ t(b) 4 t(a).

2. de Vries Algebras and their Relation to Kinematic Spaces

de Vries algebras. In mathematics, there is another case when we have a set
with two orders: the case of socalled de Vries algebras. The original example of
such an object is the class RX of all regular open subsets of a compact Hausdorff
space X, i.e., open subsets A for which the interior Int

(
A
)

of the closure A

coincides with the original set A.
On RX, we can define A 4 B ⇔ A ⊆ B and A ≺ B ⇔ A ⊆ B. One can check

that the class RX with the relation 4 is a complete Boolean algebra, with negation

¬A
def
= Int(X − A). In general, a de Vries algebra is defined as a Boolean algebra

with an additional relation ≺ that satisfies the same properties as the algebra RX.
This idea leads to the following definition [3–5]:

Definition 3. A de Vries algebra is a pair consisting of a complete Boolean
algebra (B,4) with the relation 4 (precedes) and a binary relation ≺ (strictly
precedes) for which:

• 1 ≺ 1;

• a ≺ b implies a 4 b;

• a 4 b ≺ c 4 d implies a ≺ d;
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• a ≺ b, c implies a ≺ b ∧ c;

• a ≺ b implies ¬b ≺ ¬a;

• a ≺ b implies that there exists a c such that a ≺ c ≺ b;

• a 6= 0 implies that there exists a b 6= 0 such that b ≺ a.

Possible relations with kinematic spaces: discussion. In a kinematic
space, if we associate with every element a an open cone K+

a , then we get

a 4 b ⇔ K+

b ⊆ K+
a and a ≺ b ⇔ K+

b ⊆ K+
a [10].

Please note that we need to be cautious about this observation, since standard
examples of de Vries algebras come from a compact space X, while a kinematic
space is never compact [10]. However, this observation can indeed be transformed
into a formal relation between kinematic spaces and de Vries algebras. To describe
this formal relation, we need to introduce the following auxiliary definitions.

Definition 4. We say that a de Vries algebra is connected if a ≺ a implies that
a = 0 or a = 1.

Remark 2. The name comes from the fact that, as it is easy to check, for an
algebra RX, this is indeed equivalent to connectedness of the topological space X,
i.e., to the fact that the space X cannot be represented as a union of two disjoint
open sets (which are different from X and ∅).

Theorem 1. For every connected de Vries algebra B:

• the set B−{0, 1} with a proximity relation ≺ is a normal kinematic space,

and

• the original relation 4 coincides with the closure of ≺ in the sense of

kinematic spaces.

Proof. 1◦. Let us first prove that for every a ∈ B − {0, 1}, there exists a point
a− ∈ B − {0, 1} for which a− ≺ a.

Indeed, by the definition of de Vries algebra, since a 6= 0, there exists an b 6= 0
for which b ≺ a. We will show that this b is the desired a−. We already know that
b ≺ a and that b 6= 0. So, to complete the proof, it is sufficient to show that b 6= 1.

We can prove the inequality b 6= 1 by contradiction. Indeed, if b = 1, then from
b ≺ a, we would be able to conclude that 1 ≺ a. Since a � 1, from a � 1 ≺ a, we
would then conclude that a ≺ a, which contradicts to our assumption that the de
Vries algebra B is connected.

2◦. Let us now prove that for every a ∈ B − {0, 1}, there exists a point a+ ∈
B − {0, 1} for which a ≺ a+.

Let us use an auxiliary element b
def
= ¬a. Since ¬ is a 11 mapping and it maps

0 to 1 and vice versa, we conclude that b is different from 0 and 1, i.e., that
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b ∈ B−{0, 1}. Thus, due to Part 1 of this proof, there exists a value b− ∈ B−{0, 1}
for which b− ≺ b. By definition of the de Vries algebra, this implies ¬b ≺ ¬b−,

i.e., a ≺ a+
def
= ¬b−. Due to b− ∈ B − {0, 1}, we get a+ = ¬b− ∈ B − {0, 1}. The

statement is proven.

3◦. If a ≺ b, then the existence of a c for which a ≺ c ≺ b follows directly from the
definition of a de Vries algebra.

4◦. Let us prove that if a ≺ b and a ≺ c, then there exists a d for which a ≺ d ≺ b, c.

Indeed, due to the properties of a de Vries algebra, a ≺ b, c implies that a ≺
b ∧ c, where b ∧ c 4 b, c. Due to Part 3 of this proof, there exists a d for which
a ≺ d ≺ b ∧ c. From d ≺ b ∧ c 4 b, c, we conclude that d ≺ b, c. The statement is
proven.

5◦. The dual statement, that if b ≺ b and c ≺ a, then there exists a d for which
c, d ≺ d ≺ a, follows from Part 4 of this proof by considering the values ¬a, ¬b,
and ¬c (just like we reduced Part 2 of this proof to Part 1).

6◦. So, the set B −{0, 1} is indeed a kinematic space. Thus, intervals form a basis
of a topology. Let us prove that 4 is indeed a closure of ≺ in this topology, and
that this kinematic space is normal.

7◦. Let us prove that in B − {0, 1}, we have

a 4 b ⇔ ∀c (b ≺ c → a ≺ c).

Indeed, if a 4 b and b ≺ c, then, due to the definition of a de Vries algebra,
we have a ≺ c. Vice versa, let us assume that ∀c (b ≺ c → a ≺ c), i.e., that a

strictly precedes (≺) all the elements that b strictly precedes. It is known that in
a de Vries algebra, we have b = ∨{c : b ≺ c} [3–5]. Since a strictly precedes all
elements of the set {c : b ≺ c}, it thus precedes (4) all these elements and thus,
precedes their infimum b: a ≺ b.

8◦. By using duality, we can now prove that

a 4 b ⇔ ∀c (c ≺ a → c ≺ b).

9◦. From Parts 7 and 8 of this proof, we can now conclude, by using known results
about kinematic spaces [10], that for every a:

• the cone C+
a = {b : a 4 b} is equal to the closure of the cone

K+
a = {b : a ≺ b}, and

• the cone C−

a = {b : b 4 a} is equal to the closure of the cone

K−

a = {b : b ≺ a}.
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The fact that b ∈ K+a ⇔ a 4 b ⇔ a ∈ K−

b means that the kinematic space
(B − {0, 1},≺) is normal.

The theorem is proven. �

The inverse is also true, in the following sense.

Theorem 2. Let S be a normal kinematic space, let t be a T transformation,

and let us assume that when we add the smallest element 0 and the largest

element 1 to the corresponding set (S,4), we get a complete Boolean algebra,

with t as negation. In this case, if we extent ≺ to S ∪ {0, 1} by taking and that

0 ≺ a ≺ 1 for all a, then (S ∪{0, 1},4,≺) becomes a connected de Vries algebra.

Proof. Let us prove the properties of de Vries algebra one by one.

1◦. The property 1 ≺ 1 follows from our definition of the order ≺.

2◦. For a, b ∈ S, the desired property — that a ≺ b implies a 4 b — comes from
the known properties of a kinematic space. When in the pair (a, b), at least one of
the elements a or b is equal to 0 or 1, this implication follows from our definitions
of ≺ and 4 for such pairs.

3◦. For a, b, c ∈ S, the desired property — that a 4 b ≺ c 4 d implies a ≺ d —
follows from the abovementioned results about kinematic spaces. When at least
one of the elements a, b, c, or d is equal to 0 or 1, this implication follows from the
above results and from our definitions of ≺ and 4 for the pairs containing 0 or 1.

4◦. When a ≺ b, c for a, b, c ∈ S, then, according to the definition of a kinematic
space, there exists a d for which a ≺ d ≺ b, c. Since ≺ implies 4, we have d 4 b, c

and thus, a 4 b∧ c. From a ≺ d 4 b∧ c, we conclude that a ≺ b∧ c. This inequality
is also easy to prove when one of the elements a, b, and c coincides with 0 or 1.

5◦. For a, b ∈ S, the desired property — that a ≺ b implies ¬b ≺ ¬a — follows
from the fact that t is a Ttransformation. When in the pair (a, b), at least one of
the elements a or b is equal to 0 or 1, this implication follows from our definition
of ≺ for such pairs.

6◦. When a ≺ b for a, b ∈ S, then, according to the definition of a kinematic space,
there exists a c for which a ≺ c ≺ b. This inequality is also easy to prove when
one of the elements a or b coincides with 0 or 1: e.g., if 0 ≺ a, then 0 ≺ 0 ≺ a, so
we can take c = 0. If a ≺ 1, then a ≺ 1 ≺ 1, so we can take c = 1.

7◦. Let us assume that a 6= 0, We need to prove that there exists b 6= 0 for which
b ≺ a. To prove this property, let us consider two cases: a = 1 and a 6= 1.

7.1◦. If a = 1, we can take b = 1. In this case, 1 6= 0 and 1 ≺ 1 (due to Part 1 of
this proof).

7.2◦. If a 6= 1, then, since a is also different from 0, the element a belongs to the
original set S. Thus, due to the definition of a kinematic space, there exists an
element a− ∈ S for which a− ≺ a. This element is different from 0, so we can take
it as the desired element b.

The theorem is proven. �
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