ВЫБОР РЕЖИМА ПРОДОЛЖЕНИЯ ТРАЕКТОРИИ ДИНАМИЧЕСКОЙ СИСТЕМЫ ПРИ ПЕРЕСЕЧЕНИИ ДВУХ ПОВЕРХНОСТЕЙ РАЗРЫВА

В.В. Коробицын, Ю.В. Фролова

Предлагается решение задачи поиска точки пересечения траектории динамической системы с двумя поверхностями разрыва. Приведены алгоритмы вычисления точки пересечения и способ выбора режима продолжения решения после пересечения. Рассмотрены случаи пересечения и скольжения траектории вдоль одной и двух поверхностей.

Введение

Динамические системы с клеточной структурой, описываемые с использованием двух поверхностей разрыва, могут иметь особый режим — скольжение вдоль их пересечения. При численном решении таких систем необходимо выполнить четыре этапа: 1) найти точку пересечения траектории решения с пересечением поверхностей; 2) определить режим продолжения решения; 3) обеспечить вычисления скользящей траектории; 4) найти точку схода со скольжения. В данной статье рассмотрены этапы 1 и 2.

1. Динамическая система с двумя поверхностями разрыва

Рассмотрим динамическую систему в пространстве R^n с двумя поверхностями разрыва $S_1 = \{x \in R^n : g_1(x) = 0\}, S_2 = \{x \in R^n : g_2(x) = 0\}, g_1(x), g_2(x)$ непрерывные функции. В общем случае две поверхности разбивают пространство на четыре области в R^n , хотя некоторые из них могут быть вырожденными или совпадать. Запишем систему в общем виде

$$\frac{dx}{dt} = \begin{cases}
f_{1,1}(t,x) & \text{при } g_1(x) < 0, \ g_2(x) < 0, \\
f_{-1,1}(t,x) & \text{при } g_1(x) > 0, \ g_2(x) < 0, \\
f_{1,-1}(t,x) & \text{при } g_1(x) < 0, \ g_2(x) > 0, \\
f_{-1,-1}(t,x) & \text{при } g_1(x) > 0, \ g_2(x) > 0,
\end{cases}$$
(1)

где $f_{1,1}(t,x)$, $f_{-1,1}(t,x)$, $f_{1,-1}(t,x)$, $f_{-1,-1}(t,x)$ — непрерывные функции. В этой системе может реализовываться режим скольжения вдоль двух поверхностей

Copyright © 2011 В.В. Коробицын, Ю.В. Фролова

Омский государственный университет им. Ф.М. Достоевского E-mail: korobits@rambler.ru

разрыва одновременно. Точнее, скольжение вдоль кривой $\gamma = \{x \in \mathbb{R}^n : g_1(x) = g_2(x) = 0\}$ пересечения двух поверхностей разрыва. Это выполняется, если верна система неравенств:

$$\begin{aligned}
\mathcal{L}_{f_{1,1}-f_{-1,1}}(g_1)(x) &< 0, \\
\mathcal{L}_{f_{1,-1}-f_{-1,-1}}(g_1)(x) &< 0, \\
\mathcal{L}_{f_{1,1}-f_{1,-1}}(g_2)(x) &< 0, \\
\mathcal{L}_{f_{-1,1}-f_{-1,-1}}(g_2)(x) &< 0.
\end{aligned}$$
(2)

Если траектория не проходит вблизи кривой γ , то можно использовать алгоритм из [12]. Однако если траектория пересекает кривую или проходит в непосредственной близости от нее, то характер поведения алгоритма качественно меняется. Необходимо рассмотреть два принципиально разных случая (рис. 1): а) траектория из области непрерывности попадает на кривую пересечения поверхностей; б) траектория скользила по одной из поверхностей и попала на пересечение с другой.

Рис. 1. Траектория решения попадает на пересечение поверхностей разрыва: а) из непрерывного режима; б) из скольжения по одной из поверхностей

В первом случае, при вычислении очередной точки детектировано пересечение сразу двух поверхностей разрыва. Это возможно только в том случае, если траектория проходит через точку пересечения поверхностей или очень близко к ней. Для нахождения точек пересечения кривой решения с поверхностями разрыва (будем считать, это точки разные, хотя они могут и совпадать) применим следующий алгоритм.

Алгоритм А. Вычисляются точки пересечения траектории с кривой γ и определяется режим продолжения вычисления решения.

- 1. Вычислить шаги h_1, h_2 до поверхностей S_1, S_2 . Взять $h = \min\{h_1, h_2\}$.
- 2. Выполнить шаг *h* методом Рунге—Кутты и построить интерполяционный полином Ньютона по полученным опорным точкам.

- 3. Продолжить полином вплоть до пересечения с поверхностями S₁ и S₂. Найти точки A₁, B₁ и A₂, B₂, приближающие точки пересечения полинома с поверхностями (рис. 2-а). (Однако если при нахождении точек итерационный метод не дал приемлемого результата для второй поверхности, то из точек A₁, B₁ необходимо шагнуть обычным способом, а затем, если определится пересечение, повторить процедуру. Если же все 4 точки найдены с удовлетворительной погрешностью, то следует продолжить решение из точек A₂, B₂.)
- 4. Используя точки A₂, B₂ (или A₁, B₁, если A₂, B₂ отбросили), определить режим дальнейшего решения задачи. Если векторы функций правой части в этих точках направлены к поверхности, то режим скольжения вдоль этой поверхности, если в одном направлении от неё, то непрерывный режим из соответствующей точки. Если оба вектора направлены от поверхности и в разные стороны, то режим неединственного решения. Далее продолжаем решение согласно выбранному режиму.

Рис. 2. Точки пересечения кривой решения с двумя поверхностями разрыва: а) в непрерывном режиме; б) в скользящем режиме

Алгоритм А разбирает случай, когда траектория из непрерывной области попадает на кривую пересечения поверхностей разрыва или проходит очень близко от неё.

Теперь разберём случай, когда траектория скользила вдоль одной поверхности и пошла на пересечение с другой.

Алгоритм Б. Вычисляются точки пересечения двух скользящих траекторий вдоль *S*₁ с поверхностью *S*₂.

- 1. Вычислить шаги h_1 и h_2 до пересечения траекторий с поверхностью S_2 . (Траекторий две, поскольку в скользящем режиме мы используем две по разные стороны от поверхности.) Выбрать $h = \min\{h_1, h_2\}$.
- 2. Сделать шаг h вдоль S_1 и построить два полинома $N_1(\theta)$ и $N_2(\theta)$ для обеих траекторий.
- 3. С помощью итерационной процедуры найти точки пересечения кривых $x = N_1(\theta)$ и $x = N_2(\theta)$ с поверхностью S_2 . Получим точки C_1 , D_1 и C_2 , D_2 (рис. 2-б).

4. Используя значения функций правой части в точках C_1 , D_1 , C_2 , D_2 , определяем дальнейшее поведение траектории.

Для определения поведения траектории после достижения кривой γ введём следующие векторы:

$$p_{1} = \frac{\mathrm{pr}_{S_{1}}f(C_{1}) + \mathrm{pr}_{S_{1}}f(C_{2})}{2}, \quad p_{2} = \frac{\mathrm{pr}_{S_{2}}f(C_{1}) + \mathrm{pr}_{S_{2}}f(D_{1})}{2},$$
$$p_{3} = \frac{\mathrm{pr}_{S_{1}}f(D_{1}) + \mathrm{pr}_{S_{1}}f(D_{2})}{2}, \quad p_{4} = \frac{\mathrm{pr}_{S_{2}}f(D_{2}) + \mathrm{pr}_{S_{2}}f(C_{2})}{2}.$$

Согласно полученным векторам p_1, p_2, p_3, p_4 заполним кодовое слово W, состоящее из 4 бит, по следующему правилу. Каждый *i*-ый бит равен 0, если p_i направлен в сторону кривой γ , и 1 в противном случае.

Рис. 3. Расположение точек C_1, C_2, D_1, D_2

Кодовое слово *W* может принимать 16 различных значений. Получаем 16 различных вариантов выбора режима продолжения решения.

- 0000 все векторы направлены к поверхностям S_1 и S_2 . Тогда переходим в режим скольжения вдоль обеих поверхностей S_1 и S_2 .
- 0001 0010 0100 1000 один из векторов направлен от кривой пересечения. Тогда переходим в скользящий режим вдоль соответствующей поверхности. Например, в случае 0001 переходим в режим скольжения вдоль поверхности S_1 из точек C_1, C_2 .
- 0011 0110 1100 1001 два смежных вектора направлены от кривой γ . Тогда продолжаем в непрерывном режиме из соответствующей клетки. Например, в случае 0011 продолжаем из точки C_1 .
- 0101 1010 два противоположных вектора направлены от кривой γ . Тогда траектория продолжается в скользящем режиме по соответствующей поверхности, причём в направлении вектора с большей длиной. Например, в случае 0101 траектория будет скользить вдоль поверхности S_1 . Причём если $|p_1| > |p_3|$, то в направлении вектора p_1 из точек C_1, C_2 . Если $|p_1| < |p_3|$, то в направлении вектора p_1 из точек C_1, C_2 . Если $|p_1| < |p_3|$, то в направлении вектора p_3 из точек D_1, D_2 . А если $|p_1| = |p_3|$, то неустойчивое скольжение вдоль кривой γ .

- 0111 1011 1101 1110 только один из векторов направлен к кривой γ . Тогда сравниваем длины смежных с ним векторов и продолжаем в непрерывном режиме в соответствующей клетке. Например, в случае 0111 сравниваем вектора p_1 и p_3 . Если $|p_1| > |p_3|$, то продолжаем в непрерывном режиме из точки C_1 . Если $|p_1| < |p_3|$, то продолжаем в непрерывном режиме из точки D_1 . Если $|p_1| = |p_3|$, то продолжаем в непрерывном режиме вдоль поверхности S_2 из точек C_1, D_1 .
- 1111 все вектора направлены от кривой ү (неустойчивое состояние). Тогда продолжаем в непрерывном режиме из соответствующей точки или в неустойчивом скользящем режиме.

Необходимо сделать уточнение по первому случаю – траектория пересекает две поверхности вблизи их точки пересечения.

Если при определении пересечений с S_1 и S_2 получилось так, что A_1 и A_2 находятся по одну сторону от S_1 и S_2 , B_1 и B_2 по другую сторону, то это соответствует описанному выше случаю. Необходимо рассматривать только две точки.

Рис. 4. Пересечение траекторией одновременно двух поверхностей

Рис. 5. Определение вспомогательных точек F и G

В точке *А* вектор функций правой части направлен к *S*₁ и *S*₂, необходимо изучить вектор функций правой части для точки *B*.

1. Если к S₁ и S₂ в точке B, то точку пересечения можно считать стационарной и завершить вычисления в средней точке.

- 2. Если от S_1 и S_2 в точке B, то продолжить решение в непрерывном режиме из точки B.
- 3. Если от S_1 и к S_2 в точке B. Необходимо найти точку F, лежащую по другую сторону от B относительно S_2 и от A относительно S_1 . Если вектор функций правой части в точке F направлен к S_2 , то определяем среднее значение проекций в точках B и F на S_2 . Если этот вектор направлен к S_1 , то найдена стационарная точка, иначе переходим в скользящий режим по поверхности S_2 из точек B и F. Если в точке F вектор направлен от S_2 , то продолжаем решение в непрерывном режиме из точки F (когда от S_1 ?). Однако если вектор в точке F направлен от S_2 и к S_1 , то определяем сели вектор в точке F направлен от S_2 и к S_1 , то определяем от S_2 , то продолжаем решение в непрерывном режиме из точки F (когда от S_1 ?). Однако если вектор в точке F направлен от S_2 и к S_1 , то определяем среднее значение проекций вектор функций правой части в точках A и F на S_1 . Если она направлена к S_2 , то найдена стационарная точка, а если от S_2 , то переходим в скользящий режим по поверхности S_1 из точек A и F.
- 4. Если к S_1 и от S_2 в точке B. Необходимо найти точку G, лежащую по другую сторону от B относительно S_1 и от A относительно S_2 . Если вектор функций правой части в точке G направлен к S_1 , то определяем среднее значение проекций в точках B и G на S_1 . Если этот вектор направлен к S_2 , то найдена стационарная точка, иначе переходим в скользящий режим по поверхности S_1 из точек B и G. Если в точке G вектор направлен от S_1 , то продолжаем решение в непрерывном режиме из точки G (когда от S_2 ?). Однако если вектор в точке G направлен от S_1 и к S_2 , то определяем среднее значение проекций вектор функций правой части в скользящий от S_2 ?). Однако если вектор в точке G направлен от S_1 и к S_2 , то определяем среднее значение проекций вектор функций правой части в точках A и G на S_2 . Если она направлена к S_1 , то найдена стационарная точка, а если от S_1 , то переходим в скользящий режим по поверхности S_2 из точек A и G.

Заключение

Предложенные алгоритмы позволяют осуществлять следующие операции: 1) поиск точки пересечения траектории из непрерывного режима с пересечением двух поверхностей разрыва (алгоритм А); 2) поиск точки пересечения скользящей вдоль одной поверхности траектории со второй поверхностью разрыва (алгоритм Б); 3) выбрать режим продолжения решения после достижения пересечения.

Литература

- 1. Филиппов А.Ф Дифференциальные уравнения с разрывной правой частью. М. : Наука, 1985. 224 с.
- 2. Уткин В.И. Скользящие режимы в задачах оптимизации и управления. М. : Наука, 1981. 368 с.

- Dieci L., Lopez L. Sliding Motion in Filippov Differential Systems: Theoretical Results and A Computational Approach. URL: http://www.math.gatech.edu/~dieci/ preps/DL-Fili.pdf (дата обращения 01.03.2009).
- Enright W.H., Jackson K.R., Norsett S.P., Thomsen P.G Effective solution of discontinuous IVPs using a Runge-Kutta formula pair with interpolants // Numerical Analysis Rep. 113. Univer of Manchester, Jan. 1986.
- Gear C.W., Osterby O. Solving ordinary differential equations with discontinuities // ACM Trans. Math. Software. 1984. Vol. 10. P. 23-44,
- 6. Park T., Barton P.I. State event location in differential-algebraic models // ACM Transactions on Modeling and Computer Simulation. 1996. Vol. 6, N 2. P. 137–165.
- Piiroinen P.T., Kuznetsov Yu.A. An event-driven method to simulate Filippov systems with accurate computing of sliding motions // ACM Trans. Math. Software. 2008. V. 34, N 13. C. 1–24.
- 8. Shampine L.F., Thompson S. Event location for ordinary differential equations // Computer and Mathematics with Application. 2000. Vol. 39. P. 43–54.
- Коробицын В.В., Фролова Ю.В. Алгоритм численного решения дифференциальных уравнений с разрывной правой частью // Математические структуры и моделирование. 2005. Вып. 15. С. 46–54.
- Коробицын В.В., Маренич В.Б., Фролова Ю.В. Исследование поведения явных методов Рунге-Кутты при решении систем обыкновенных дифференциальных уравнений с разрывной правой частью // Математические структуры и моделирование. 2007. Вып. 17. С. 19–25.
- 11. Коробицын В.В., Фролова Ю.В., Маренич В.Б. Алгоритм численного решения кусочно-сшитых систем // Вычисл. технологии. 2008. Т. 13, N 2. С. 70-81.
- Коробицын В.В., Фролова Ю.В. Алгоритм вычисления скользящего режима для системы с гладкой границей разрыва // Вычисл. технологии. 2010. Т. 15, N 2. С. 56–72.